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Abstract

This work continues the calculation of the stress intensity factors\ as a function of position s along the
front of an arbitrary "kinked and curved# in_nitesimal extension of some arbitrary crack on some three!
dimensional body[ More precisely\ o denoting a small parameter which the crack extension length is
proportional to\ what is studied here is the third term\ proportional to o0 � o and noted K"0#"s#o\ of the
expansion of these stress intensity factors at the point s of the crack front in powers of o[ The novelties with
respect to previous works due to Gao and Rice on the one hand and Nazarov on the other hand\ are that
both the original crack and its extension need not necessarily be planar\ and that a kink "discontinuity of
the tangent plane to the crack# can occur all along the original crack front[ Two expressions of K"0#"s# are
obtained^ the di}erence is that the _rst one is more synthetic whereas the second one makes the in~uence of
the kink angle "which can vary along the original crack front# more explicit[ Application of some criterion
then allows to obtain the a priori unknown geometric parameters of the small crack extension "length\
kink angle\ curvature parameters#[ The small scale {{segmentation|| of the crack front which is observed
experimentally in the presence of mode III is disregarded here because a large scale point of view is adopted^
this phenomenon will be discussed in a separate paper[ It is shown how these results can be used to
numerically predict crack paths over arbitrary distances in three dimensions[ Simple applications to problems
of con_gurational stability and bifurcation of the crack front are _nally presented[ Þ 0887 Elsevier Science
Ltd[ All rights reserved[

0[ Introduction

We refer to Sections 0 and 1 of Part I for a statement of the problem examined and the notations
used[ It was shown in Part I that in the most general three!dimensional case\ the expressions "7#

� Correspponding author[
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and "08# of the _rst two terms\ K�"s# and K"0:1# "s#zoh"s# � K"0:1# "s#zd"s#\ of the expansion of the
stress intensity factors "SIFs# in powers of some small time!like parameter o\ appeared as natural
extensions of those corresponding to the two!dimensional case[ In particular\ both the crack
extension length d"s?# 0 oh"s?# and the kink angle 8"s?#\ which depended upon the current position
s? along the crack front\ appeared only through their local values at that point s of the front where
the variation of the SIFs was to be evaluated[

In contrast\ the study of the third term\ K"0#"s#o\ of the expansion of the SIFs will evidence some
dependence upon the values of the functions h"s?# and 8"s?# all alon` the crack front\ through some
integral term[ This feature will considerably complicate the treatment^ in order for its directrix to
remain understandable\ many of its technical details will be relegated to Appendices[

In fact\ the {{non!local|| character of the third term of the expansion of the SIFs "that is\ the fact
that it involves an integral over the whole crack front# was already apparent in the works of Rice
"0874#\ Gao and Rice "0875\ 0876a\ b#\ Gao "0877#\ Rice "0878# and Nazarov "0878#[ Some
detailed comparison with the results of these authors will be provided[ However\ it is worth
stressing at once that the essential originality of our approach lies in the possibility of an arbitrary
geometry of the crack and its extension\ and in particular of the existence of some kink angle
between the original crack and its extension\ whereas all works quoted above considered only
coplanar extensions of an initially plane crack[ Accounting for non!coplanarity is essential to deal
with mixed mode situations[

Our essential results are contained in eqns "29# ðor "29?#Ł "in Section 3# and "21# "in Section 4#
of the text[ The _rst one evidences the in~uence of the {{propagation rate|| of the crack front h"s?#
upon K"0#"s#[ Indeed it splits this quantity into a term proportional to h"s# "representing its value
for a uniform propagation rate] h"s?# 0 h"s#\ [s?#\ another one proportional to the derivative h?"s#
of h"s# along the crack front\ and a last one which is an integral over the front involving the
{{~uctuations|| h"s?#−h"s# of the propagation rate[ This expression will be su.cient for the appli!
cations envisaged at the end[ However\ it does not clearly display the in~uence of the function
8"s?# upon K"0#"s#\ which remains implicit in some terms[ Formula "21# makes it more explicit\ at
the expense of a greater complexity\ by again distinguishing between the in~uences of the local
kink angle 8"s#\ its derivative 8?"s# along the front and the ~uctuations of the function 8"s?#[ That
second formula will be necessary for the theoretical study of small!scale crack front {{segmentation||
in mixed mode I¦III\ to be carried out in some future paper[

The _nal aim of the present paper is achieved in Section 6[ It consists in combining the expansion
of the SIFs in powers of the crack extension length with some appropriate propagation criterion
in order to predict the propagation path[ The criterion adopted here itself combines the {{principle
of local symmetry|| of Goldstein and Salganik "0863# and some Gri.th!type energetic criterion^
as explained in the text\ this means disregarding the {{segmentation|| of the crack front arising
from the presence of mode III[ Two cases are distinguished according to whether the crack
extension is kinked or not[ However\ in both cases it reveals possible to separately determine the
length of the crack extension and its kink angle and curvature parameters[ Potential applications
of the formulae obtained to fully three!dimensional numerical predictions of crack paths over
arbitrarily long distances are presented[ Also\ as another\ simple application\ we consider in Section
7 the problem of con_gurational stability of the crack front vs small in!plane perturbations\ for
semi!in_nite and penny!shaped cracks loaded in Mode I¦III[ These problems were previously
studied by Gao and Rice "0875# and Gao "0877#\ assuming propagation to be strictly coplanar[ It
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is shown that introduction of the curvature parameters of the crack extension does not modify
Gao and Rice|s conclusions in any way[

1[ Preliminaries on K"0#"s#

Equation "04# of Part I gave the two!term expansion of the functional L in powers of o[ We
now introduce its three!term expansion]0

LðR\ C\ G\ 8\ 8?\ a�\ C�\ oh\ h?:h^ TŁ � L�ðR\ C\ G\ 8^ TŁ¦L"0:1# ðR\ C\ G\ 8\ a�^ TŁzoh

¦L"0# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ TŁoh¦O"o2:1#[ "0#

The arguments 8?\ C� and h?:h have now been discarded in the function L"0:1#^ this is because
K"0:1#\ and therefore L"0:1#\ have been proved in Section 5 of Part I to depend on the geometric
parameters of the crack extension only through the arguments 8 "kink angle# and a� " _rst
{{curvature parameter||#[1 The functional L"0#\ just as L� and L"0:1#\ is linear in T and inde_nitely
di}erentiable with respect to all its geometric arguments\ since it does not depend upon the
extension length oh[

Also\ eqn "02# of Part I implies that the traction _eld T"R\ o# exerted on the boundary of the
sphere of centre s and radius R\ as a result of the application of the prescribed displacements and
tractions up\ tp on 1Vu and 1Vt\ admits an expansion in powers of o of the form

T"R\ o# � T"R#¦T"0# "R#o¦O"o2:1#\ "1#

without any term proportional to o0:1[
Combining eqn "5# of Part I with eqns "0# and "1#\ one gets

K"o# � K�¦K"0:1#zoh¦K"0#o¦O"o2:1# "2#

where K� and K"0:1# are given by eqns "6# and "07# of Part I\ and K"0# by

K"0# � L"0# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ T"R#Łh¦L�ðR\ C\ G\ 8^ T"0# "R#Ł[ "3#

The novelty here with respect to the expressions of K� and K"0:1# is that K"0# depends on the stress
_eld after the kink through its _rst derivative with respect to o[ This is bound to be a source of
trouble\ all the more so since eqn "02# of Part I shows that the expression of this derivative consists
of an integral over the whole crack front\ which will result in an expression of {{non!local|| nature
for K"0#[

Now\ using eqn "0# and expanding eqn "3# of Part I to order o0 0 o instead of just zo as we did
in Section 5 of Part I\ we get the following homogeneity property for the functional L"0#]

0 Recall that the values of the various functions de_ned on the crack front are to be taken at the point s if their
argument is not explicitly speci_ed[

1 Note however that L"0:1# still depends on the curvatures C and G of the surface and the front of the initial crack
because K"0:1#\ when expressed in terms of the loading T\ depends on them through the vectors of initial SIFs K and
non!singular stresses T ðsee eqn "08# of Part IŁ[
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L"0# ðlR\ C:l\ G:l\ 8\ 8?:l\ a�:zl\ C�:l\ h?:"lh#^ TŁ �
0

zl
L"0# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ TŁ

for all positive l\ so that for l � 0:R\

L"0# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ T"R#Ł

� L"0# ð0\ RC\ RG\ 8\ R8?\ zR a�\ RC�\ Rh?:h^ T"R#:zRŁ[ "4#

But\ by eqn "1# of Part I\ T"R# admits an expansion in powers of R for R : 9 of the following
type]

T"R# �
Kp

zR
"f p"c\ x##¦Tp"gp"c\ x##¦ðBp"hp"c\ x##¦K?p"lp"c\ x##

¦ClmKp"mplm"c\ x##¦GKp"np"c\ x##ŁzR¦O"R#[ "5#

Expanding the right!hand side of eqn "4# in powers of R and using eqn "5#\ one gets

L"0# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ T"R#Ł �
0
R

= KpL
"0# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦
0

zR
= TpL

"0# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "gp"c\ x##Ł

¦
0

zR
= a�Kp

1L"0#

1a�
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦BpL
"0# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "hp"c\ x##Ł¦K?pL

"0# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "lp"c\ x##Ł

¦ClmKp

1L"0#

1Clm

ð0\ C\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x#¦Cnkm
pnk"c\ x##ŁC�9

¦GKp

1L"0#

1G
ð0\ 9\ G\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x#¦Gnp"c\ x##ŁG�9

¦8?Kp

1L"0#

18?
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł¦a�Tp

1L"0#

1a�
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "gp"c\ x##Ł

¦C�Kp

1L"0#

1C�
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦
h?
h

Kp

1L"0#

1"h?:h#
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦
a�1

1
Kp

1L"0#

1a�1
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł¦O"zR#[ "6#

Multiplying the right!hand side here by h and adding the term L�ðR\ C\ G\ 8^ T"0#"R#Ł\ one gets
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K"0# by eqn "3#\ and this quantity is by de_nition independent of R[ Hence the divergent terms
proportional to R−0:1 and R−0 in this right!hand side must necessarily "once multiplied by h# cancel
out with some corresponding terms in the expansion of L�ðR\ C\ G\ 8^ T"0#"R#Ł in powers of R[ In
fact\ we noted at the beginning of Section 5 of Part I that as a consequence of the lack of dependence
of the SIFs K�p just after the kink upon a�\ L�ðR\ C\ G\ 8^ TŁ is also independent of that parameter[
Furthermore\ eqn "02# of Part I implies that T"0#"R# does not depend on it either[ It follows that
L�ðR\ C\ G\ 8^ T"0#"R#Ł is independent of a�[ Also\ eqns "02# and "7# of Part I show that T"0#"R#
depends on the loading only through the initial SIFs and is not in~uenced by the non!singular
stresses[ It follows that the two terms proportional to R−0:1 in the right!hand side of eqn "6#\ once
multiplied by h\ can have no equivalent in the expansion of L�ðR\ C\ G\ 8^ T"0#"R#Ł in powers of
R and are therefore necessarily zero[

However\ the same cannot be said of the term proportional to R−0[ Let us therefore de_ne the
principal part\ noted PP\ of L�ðR\ C\ G\ 8^ T"0#"R#Ł\ as

PPL�ðR\ C\ G\ 8^ T"0# "R#Ł 0 lim
R:9 6L�ðR\ C\ G\ 8^ T"0# "R#Ł

¦
0
R

= KphL"0# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł7 "7#

"the existence of the limit is guaranteed by the very fact that the left!hand side of eqn "3# is
independent of R#[ Equations "3# and "6# then yield\ in the limit R : 9]

K"0# � PPL�ðR\ C\ G\ 8^ T"0# "R#Ł

¦BphL"0# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "hp"c\ x##Ł¦K?phL"0# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "lp"c\ x##Ł

¦ClmKph
1L"0#

1Clm

ð0\ C\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x#¦Cnkm
pnk"c\ x##ŁC�9

¦GKp h
1L"0#

1G
ð0\ 9\ G\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x#¦Gnp"c\ x##ŁG�9

¦8?Kph
1L"0#

18?
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦a�Tph
1L"0#

1a�
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "gp"c\ x##Ł

¦C�Kph
1L"0#

1C�
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦Kph?
1L"0#

1"h?:h#
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦
a�1

1
Kph

1L"0#

1a�1
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł[ "8#
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All terms here are in explicit form except for the _rst one[ The problem is thus reduced to _nding
a more explicit formula for PPL�ðR\ C\ G\ 8^ T"0#"R#Ł[

2[ Expression of PPL�"T"0##

The derivative\ for o � 9\ of the displacement with respect to o\ is given by eqn "01# of Part I[
We introduce\ following Rice "0874#\ the diagonal matrix

L 0"Lpq# 0
0
E &

0−n1 9 9

9 0−n1 9

9 9 0¦n' "09#

"where E and n are Young|s modulus and Poisson|s ratio#\ and the notation
K�p"V\ s?\ M# 0 ðK "0#

p �\ K "1#
p �\ K "2#

p �Ł"V\ s?\ M#[ Remember that K "i#
p �"V\ s?\ M# here denotes the p!th

SIF just after the kink at the point s? of the crack front arising from application of some unit point
force in the direction Ei 0 1OM:1Xi on the point M\ 1Vu and 1Vt being simultaneously clamped
and free of tractions[ With this notation\ one puts eqn "01# of Part I in vectorial form]

1u

1o
"M\ o � 9# � gF

1LqrK�q"s?#K�r"V\ s?\ M#h"s?# ds?[ "00#

To obtain the corresponding traction _eld T"0# on the boundary 1S"s\ R# of the sphere of centre
s and radius R\ one must evaluate the symmetrized gradient of this new {{displacement||\ apply the
elasticity operator to get the stresses and contract the result with the unit outward normal vector
to the sphere[ This succession of operations de_nes a _rst!order linear di}erential operator which
will be denoted LM "the index M underlines the dependence upon the position\ which arises from
that upon the local direction of the unit normal vector#[ Applying this operator to both sides of
eqn "00#\ one gets the following expression of T"0#]

T"0# "R# 0 T"0# "s\ R# 0 gF

1LqrK�q"s?#"LM = K�r"V\ s?\ M##1S"s\R#h"s?# ds? "01#

where the notation "= = =#1S"s\R# indicates a traction _eld exerted on 1S"s\ R#[

2[0[ Case of an identically zero kink an`le

This special case includes in particular that of a planar crack with a coplanar extension\ which
was studied by former authors "see the Introduction#[ It is considered _rst for simplicity^ but\ as
will be seen\ extending the reasoning to arbitrary kinked and curved cracks does not necessitate
introducing new ideas\ it only makes notations heavier[

By eqn "01#\ the components of the quantity L�"T"0## of interest can be written as
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L�p ðR\ C\ G\ 8 � 9^ T"0# "R#Ł 0 Lp ðR\ C\ G^ T"0# "R#Ł � gF

Zpq"V\ R\ s\ s?#Kq"s?#h"s?# ds? "02#

where

Zpq"V\ R\ s\ s?# 0 1LqrLp ðR\ C\ G^ "LM = Kr"V\ s?\ M##1S"s\R#Ł[ "03#

K�q and K�r here have simply become Kq and Kr\ since there is no kink[ Similarly\ the notation
L�ðR\ C\ G\ 8 � 9^ TŁ has been replaced by the simpler and logical one LðR\ C\ G^ TŁ[ Note that
the operator Z de_ned by eqn "03# is independent of the curvature parameters a�"s?# and C�"s?#
of the crack extension\ since its de_nition involves only quantities relative to the situation prior to
propagation of the crack[

Let us brie~y sketch the di.culties to be encountered when taking the limit R : 9 in the right!
hand side of eqn "02#[ Even if the quantity Zpq"V\ R\ s\ s?# is supposed to possess some limit
Zpq"V\ s\ s?# for R : 9\ there is no reason to think that its convergence towards that limit will be
uniform with respect to s? for s? close to s^ it is in fact shown in Appendix B that it is not uniform[
As a result\ the limit of the integral of Zpq"V\ R\ s\ s?# "times some other factors# over the crack
front will not simply be the integral of Zpq"V\ s\ s?# "times the same factors#[ Also\ the {{kernel||
Zpq"V\ s\ s?# will represent in some way the e}ect of the crack advance d"s?# at the point s? on the
variation of the SIFs at the point s\ and as such is bound to be singular "divergent# for s? : s[

The treatment will rely on three lemmas[ The proofs of these lemmas are quite technical\ and for
this reason relegated to Appendix A " for Lemma 0#\ Appendix B " for Lemma 1# and Appendices C
and D " for Lemma 2#[ What these lemmas say is as follows[

Lemma 0[ D"s\ s?# denoting the Cartesian distance between the points s and s?\ the quantity
Zpq"V\ R\ s\ s?# is in reality independent of R for R ³ D"s\ s?#^ its value in such conditions will be
denoted Zpq"V\ s\ s?#[2 As a consequence\ whatever the open interval I of F containing the point
s\ one has

lim
R:9 gF−I

Z"V\ R\ s\ s?# = K"s?#h"s?# ds? � gF−I

Z"V\ s\ s?# = K"s?#h"s?# ds?[ "04#

Lemma 1[ The function "of s?# Z"V\ s\ s?#"s?−s#1 is continuous and _nite at the point s? � s\ and its
value at that point is universal "it depends only on Poisson|s ratio#[

Lemma 2[ If the propagation rate h"s?# is O""s?−s#1# in the vicinity of the point s? � s\ then

lim
R:9 gF

Z"V\ R\ s\ s?# = K"s?#h"s?# ds? � gF

Z"V\ s\ s?# = K"s?#h"s?# ds? "05#

"note that the integral in the right!hand side is convergent since Z"V\ s\ s?# is O""s?−s#−1# by
Lemma 1#[

2 This notation is consistent with the de_nition of Zpq"V\ s\ s?# as the limit of Zpq"V\ R\ s\ s?# for R : 9[
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Combining eqns "7# and "02#\ one gets

PPLðR\ C\ G^ T"0# "R#Ł � lim
R:9 $gF

Z"V\ R\ s\ s?# = K"s?#h"s?# ds?

¦
0
R

= h"s#L"0# "0\ 9\ 9\ 8"s# � 9\ 9\ 9\ 9\ 9^ Kp"s#"f p"c\ x###% "06#

where indications of dependence upon s have been restored in order to avoid any ambiguity[ Let
us _rst consider a uniform advance of the crack front] h"s?# 0 h"s#\ [s?[ Then

PPLðR\ C\ G^ T"0# "R#Ł � A"s#h"s#

where

A"s# 0 lim
R:9 $gF

Z"V\ R\ s\ s?# = K"s?# ds?

¦
0
R

= L"0# "0\ 9\ 9\ 8"s# � 9\ 9\ 9\ 9\ 9^ Kp"s#"f p"c\ x###%[ "07#

The existence of the limit here results from the fact that PPLðR\ C\ G^ T"0#"R#Ł exists and is _nite
for all possible advances of the crack front\ including a uniform one[

Let us now come back to the case of an arbitrary function h"s?#\ and rewrite the term between
brackets in the right!hand side of eqn "06# as

$gF

Z"V\ R\ s\ s?# = K"s?# ds?¦
0
R

= L"0# "0\ 9\ 9\ 8"s# � 9\ 9\ 9\ 9\ 9^ Kp"s#"f p"c\ x###% h"s#

¦gF

Z"V\ R\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?[

When R goes to 9\ the term ð= = =Łh"s# tends towards A"s#h"s# and the remaining integral has a limit\
since the whole expression has a limit equal to PPL"T"0##[ Therefore\

PPLðR\ C\ G^ T"0# "R#Ł � A"s#h"s#¦lim
R:9 gF

Z"V\ R\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?[ "08#

In order to evaluate the integral in the right!hand side of eqn "08#\ let us split it in the following
way\ where I 0 Łs−s\ s¦sð "s being an arbitrary positive number\ _xed for the moment but
intended to be shrunk to 9 in _ne#]

gF

Z"V\ R\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?

� gF−I

Z"V\ R\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?¦g
s¦s

s−s

Z"V\ R\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?
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� gF−I

Z"V\ R\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?

¦g
s¦s

s−s

Z"V\ R\ s\ s?# = K"s?#ðh"s?#−h"s#−h?"s#"s?−s#Ł ds?

¦h?"s# g
s¦s

s−s

Z"V\ R\ s\ s?# = K"s?#"s?−s# ds?[

Now let us take the limit R : 9 "s being _xed# in the last expression[ By Lemma 0\ the _rst integral
tends towards the integral of the same quantity but with Z"V\ s\ s?# instead of Z"V\ R\ s\ s?#[ The
same is true of the second integral by Lemma 2 "the function h being assumed to be of class C�#[
Finally the third integral has a limit since we have seen that the left!hand side possesses one[ It
follows that

lim
R:9 gF

Z"V\ R\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds? � gF−I

Z"V\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?

¦g
s¦s

s−s

Z"V\ s\ s?# = K"s?#ðh"s?#−h"s#−h?"s#"s?−s#Ł ds?

¦h?"s# = lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?# = K"s?#"s?−s#Ł ds?[

Now let us shrink s to 9[ The _rst integral in the right!hand side tends to the Cauchy principal
value "noted PV# of the same integrand[ "Note that by Lemma 1\ this integrand is O""s?−s#−0# for
s? : s\ so that the integral does exist in principal value[# The integrand in the second integral is
bounded by Lemma 1\ so that the integral tends to 9 in the limit s : 9[ Finally the third integral
is forced to tend towards some limit since the left!hand side is independent of s[ We therefore get

lim
R:9 gF

Z"V\ R\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?

� PV gF

Z"V\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?¦B"s#h?"s#

where

B"s# 0 lim
s:9

lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?# = K"s?#"s?−s# ds?[ "19#

Combining this last result with eqn "08#\ one obtains

PPLðR\ C\ G^ T"0# "R#Ł � A"s#h"s#¦B"s#h?"s#¦PV gF

Z"V\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?[ "10#

Equation "10#\ which is the essential result of this section\ shows that PPL"T"0## is not an arbitrary
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functional of the propagation rate h"s?#] it is the sum of a term proportional to the local value of
h at the point s\ another one proportional to its local derivative h?"s# along the crack front\ and an
integral in principal value of the {{~uctuation|| h"s?#−h"s# over the front[

Extra information can be given on the quantities A"s#\ B"s# and Z"V\ s\ s?#[ First\ the quantity
A"s# does not admit any universal expression[ More precisely\ it is impossible to express it in terms
of the parameters characterizing the local `eometry and the initial local stress expansion^ it depends
upon the whole geometry of the body and the initial crack considered and must therefore be
evaluated in each particular case[ This is obvious since it was already true in the two!dimensional
case "see Sumi et al[\ 0872^ Leblond\ 0878^ Leguillon\ 0882#[ The {{kernel|| Z"V\ s\ s?# is no more
universal\ as symbolized by the presence of the argument {{V|| "although\ as stated by Lemma 1\
its asymptotic behavior for s? : s is universal#[ Indeed the components of Kr"V\ s?\ M# are SIFs at
the point s? of the initial crack front generated by some unit point forces exerted on the point M\
1Vu being clamped and 1Vt free of tractions^ therefore they depend upon the whole geometry of
V\ and the same is true of Z"V\ s\ s?# by eqn "03# and the de_nition of Z"V\ s\ s?# as the constant
value of Z"V\ R\ s\ s?# for R ³ D"s\ s?#[

In contrast\ the quantity B"s# does admit a universal expression in terms of the initial SIFs "plus
Poisson|s ratio#[ To show this\ let us split the right!hand side of eqn "19# as follows]

B"s# � $lims:9
lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?#"s?−s# ds?% = K"s#

¦lim
s:9

lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?# = ðK"s?#−K"s#Ł"s?−s# ds?[

By Lemma 2\ the limit of Ðs¦s
s−s Z"V\ R\ s\ s?# = ðK"s?#−K"s#Ł"s?−s# ds? for R : 9 is

Ðs¦s
s−s Z"V\ s\ s?# = ðK"s?#−K"s#Ł"s?−s# ds?[ By Lemma 1\ the integrand here is bounded so that the

limit of the integral for s : 9 is zero[ Therefore the preceding expression of B"s# becomes

B"s# � $lims:9
lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?#"s?−s# ds?% = K"s#[ "19?#

It is proved in Appendix E that the term ð= = =Ł here depends only on Poisson|s ratio\ whence follows
the universal character of B"s#[

2[1[ Case of an arbitrary kinked crack extension

We now come back to the general case where 8"s?# % 9\ the treatment of which will require only
moderate additional e}ort[ Equation "7# of Part I yields K�m"s?# � Fmq"8"s?##Kq"s?# and
K "i#

n �"V\ s?\ M# � Fnr"8"s?##K "i#
r "V\ s?\ M#cK�n"V\ s?\ M# � Fnr"8"s?## Kr"V\ s?\ M#[ It follows from

there and eqn "01# that

T"0# "R# 0 T"0# "s\ R# � gF

1LmnK�m"s?#"LM = K�n"V\ s?\ M##1S"s\R#h"s?# ds?

� gF

1LmnFmq"8"s?##Kq"s?#Fnr"8"s?##"LM = Kr"V\ s?\ M##1S"s\R#h"s?# ds

so that
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L�p ðR\ C\ G\ 8^ T"0# "R#Ł

� gF

1LmnFmq"8"s?##Fnr"8"s?##L�p ðR\ C\ G\ 8^ "LM = Kr"V\ s?\ M##1S"s\R#ŁKq"s?#h"s?# ds?[

But eqn "7# of Part I also implies that

L�p ðR\ C\ G\ 8^ "LM = Kr"V\ s?\ M##1S"s\R#Ł � Fps"8"s##Ls ðR\ C\ G^ "LM = Kr"V\ s?\ M##1S"s\R#Ł

where\ as in Section 2[0 above\ the notation L�"R\ C\ G\ 8 � 9^ T# has been replaced by
L"R\ C\ G^ T#[ It follows that

L�p ðR\ C\ G\ 8^ T"0# "R#Ł � gF

Zpq"V\ R\ s\ s?\ 8"s#\ 8"s?##Kq"s?#h"s?# ds? "11#

where

Zpq"V\ R\ s\ s?\ 8"s#\ 8"s?##

� 1Fps"8"s##Ls ðR\ C\ G^ "LM = Kr"V\ s?\ M##1S"s\R#ŁFnr"8"s?##LmnFmq"8"s?##[ "12#

Note that the very de_nition "12# of the operator Z implies that it is independent of the curvature
parameters a�"s?#\ C�"s?# of the crack extension\ just as in the case of an identically zero kink angle
"see Section 2[0#[

The operator Z"V\ R\ s\ s?\ 8"s#\ 8"s?## happens to be expressible in terms of the kink angles 8"s#\
8"s?# and the same operator but for zero angles 8"s#\ 8"s?#[ Indeed\ for 8"s# �
8"s?# � 9cF"8"s## � F"8"s?## � 0\3 eqn "12# yields

Zpq"V\ R\ s\ s?\ 9\ 9# 0 Zpq"V\ R\ s\ s?# � 1Lp ðR\ C\ G^ "LM = Kn"V\ s?\ M##1S"s\R#ŁLnq

where the symmetry of the matrix L has been used[ Inversion of this equation yields

1Ls ðR\ C\ G^ "LM = Kr"V\ s?\ M##1S"s\R#Ł � Zst"V\ R\ s\ s?#L−0
tr ^

inserting this result into eqn "12#\ one gets

Zpq"V\ R\ s\ s?\ 8"s#\ 8"s?## � Fps"8"s##Zst"V\ R\ s\ s?#L−0
tr Fnr"8"s?##LnmFmq"8"s?##

cZ"V\ R\ s\ s?\ 8"s#\ 8"s?## � F"8"s## = Z"V\ R\ s\ s?# = L−0 = FT"8"s?## = L = F"8"s?##

where FT denotes the transpose of F[ But\ because of the form of the matrices F and L ðsee eqns
"8# of Part I and "09# of the present paperŁ\ FT and L happen to commute so that the preceding
equation takes the simpler form

Z"V\ R\ s\ s?\ 8"s#\ 8"s?## � F"8"s## = Z"V\ R\ s\ s?# ="FT = F#"8"s?## "13#

"note that the argument of the _rst {{F|| is di}erent from that of the other two#[

3 The property F"9# � 0 is obvious] it just means that the SIFs just before and just after the kink are identical if there
is no kink[
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The rest of the treatment is based on eqns "11# and "13# plus three new lemmas[

Lemma 0?[ The operator Z"V\ R\ s\ s?\ 8"s#\ 8"s?## is in fact independent of R for R ³ D"s\ s?#\ its
value being then noted Z"V\ s\ s?\ 8"s#\ 8"s?##[ As a consequence\ for every open interval I of the
crack front containing the point s\ one has

lim
R:9 gF−I

Z"V\ R\ s\ s?\ 8"s#\ 8"s?## = K"s?#h"s?# ds? � gF−I

Z"V\ s\ s?\ 8"s#\ 8"s?## = K"s?#h"s?# ds?[

This lemma is a trivial consequence of Lemma 0 and eqn "13#[ This equation also implies that

Z"V\ s\ s?\ 8"s#\ 8"s?## � F"8"s## = Z"V\ s\ s?# ="FT = F#"8"s?##[ "14#

This result shows that the operator Z"V\ s\ s?\ 8"s#\ 8"s?## depends upon the kink an`les 8"s#\ 8"s?#
in a universal way\ throu`h the same operator F that connects the SIFs just before and just after the
kink[ In other words\ the non!universal character of this operator is {{concentrated|| in its value
for zero kink angles 8"s#\ 8"s?#[

Lemma 1?[ The function "of s?# Z"V\ s\ s?\ 8"s#\ 8"s?##"s?−s#1 is continuous and _nite at the point
s? � s\ and its value at that point is universal "it depends only on 8"s# and Poisson|s ratio#[

Again\ this is a trivial consequence of Lemma 1 and eqn "14#[

Lemma 2?[ If the propagation rate h"s?# is O""s?−s#1# for s? : s\ then

lim
R:9 gF

Z"V\ R\ s\ s?\ 8"s#\ 8"s?## = K"s?#h"s?# ds? � gF

Z"V\ s\ s?\ 8"s#\ 8"s?## = K"s?#h"s?# ds?[

This is a consequence of Lemma 2 plus the fact that each component of the integrand in the left!
hand side can be decomposed into products of some component of the operator Z"V\ R\ s\ s?# times
some term which is O""s?−s#1#[

Using these three lemmas and following the same reasoning as in the case where 8"s?# 0 9 "see
Section 2[0#\ one _nds that

PPL�ðR\ C\ G\ 8^ T"0# "R#Ł � A"s#h"s#¦B"s#h?"s#

¦PV gF

Z"V\ s\ s?\ 8"s#\ 8"s?## = K"s?#ðh"s?#−h"s#Ł ds? "15#

where

A"s# 0 lim
R:9 $gF

Z"V\ R\ s\ s?\ 8"s#\ 8"s?## = K"s?# ds?

¦
0
R

= L"0# "0\ 9\ 9\ 8"s#\ 9\ 9\ 9\ 9^ Kp"s#"f p"c\ x##% "16#

and
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B"s# 0 lim
s:9

lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?\ 8"s#\ 8"s?## = K"s?#"s?−s# ds?[ "17#

Equation "15# stands as the extension of the basic result "10# applicable to the special case of an
identically zero kink angle\ to the general case of an arbitrarily kinked crack extension[

Just as in the case where 8"s?# 0 9\ the quantity B"s# admits a universal expression[ To show
this\ let us _rst remark that exactly as we did before\ we may replace K"s?# by K"s# in the integral
of eqn "17#[ Writing then Z"V\ R\ s\ s?\ 8"s#\ 8"s?##"s?−s#\ using eqn "13#\ as

F"8"s## = Z"V\ R\ s\ s?# ="FT = F#"8"s##"s?−s#

¦F"8"s## = Z"V\ R\ s\ s?# = ð"FT = F#"8"s?##−"FT = F#"8"s##Ł"s?−s#

and noting that again\ the integral of the last term vanishes in the double limit R : 9\ then s : 9\
one sees that the expression "17# of B"s# becomes

B"s# � F"8"s## = $lims:9
lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?#"s?−s# ds?% ="FT = F#"8"s## = K"s#[ "17?#

This formula\ which extends eqn "19?# to the general case where 8"s?# % 9\ establishes the universal
character of B"s#\ since the term ð= = =Ł depends only on Poisson|s ratio "see Appendix E#[

3[ First formula for K"0#*The operator N"8#

We shall directly envisage here the general case where 8"s?# % 9^ the situation where 8"s?# % 9
will be treated as a special case[

Using eqns "8# and "15# and changing the order of some terms\ one gets

K"0# "s# � A"s#h"s#¦Bp"s#h"s#L"0# ð0\ 9\ 9\ 8"s#\ 9\ 9\ 9\ 9^ "hp"c\ x##Ł

¦K?p"s#h"s#L"0# ð0\ 9\ 9\ 8"s#\ 9\ 9\ 9\ 9^ "lp"c\ x##Ł

¦Clm"s#Kp"s#h"s#
1L"0#

1Clm

ð0\ C\ 9\ 8"s#\ 9\ 9\ 9\ 9^ "f p"c\ x#¦Cnkm
pnk"c\ x##ŁC�9

¦G"s#Kp"s#h"s#
1L"0#

1G
ð0\ 9\ G\ 8"s#\ 9\ 9\ 9\ 9^ "f p"c\ x#¦Gnp"c\ x##ŁG�9

¦8?"s#Kp"s#h"s#
1L"0#

18?
ð0\ 9\ 9\ 8"s#\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦a�"s#Tp"s#h"s#
1L"0#

1a�
ð0\ 9\ 9\ 8"s#\ 9\ 9\ 9\ 9^ "gp"c\ x##Ł

¦
a�1"s#

1
Kp"s#h"s#

11L"0#

1a�1
ð0\ 9\ 9\ 8"s#\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł
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¦C�"s#Kp"s#h"s#
1L"0#

1C�
ð0\ 9\ 9\ 8"s#\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦B"s#h?"s#¦Kp"s#h?"s#
1L"0#

1"h?:h#
ð0\ 9\ 9\ 8"s#\ 9\ 9\ 9\ 9^ "f p"c\ x##Ł

¦PV gF

Z"V\ s\ s?\ 8"s#\ 8"s?## = K"s?#ðh"s?#−h"s#Ł ds? "18#

where the argument s has systematically been re!introduced in order to avoid any ambiguity[ In
the right!hand side here\ three groups of terms can be distinguished according to the way they are
in~uenced by the propagation rate[ The _rst one\ which includes terms 0Ð8\ involves only h"s#[
The second group consists of terms 09 and 00 and is proportional to h?"s#[ Finally the third group
consists only of the last\ integral term involving the ~uctuation h"s?#−h"s#[ A further distinction
can be made among the terms belonging to the _rst group[ Indeed\ we shall see below that when
one will want to use eqn "18#\ combined with some propagation criterion\ to derive the values of
the geometric parameters 8"s#\ a�"s#\ C�"s#\ h"s# of the crack extension along the crack front\ 8"s#
and a�"s# will in fact already be known[ One can therefore distinguish between the eight _rst terms
which do not involve the unknown C�"s#\ and the ninth which does[

Let us _rst consider the case where the propagation rate is uniform] h"s?# 0 h"s# 0 h\ [s?\ and
C�"s# is zero[ We then have\ according to eqn "2# and since oh � d]

K"s\ o# � K�"s#¦K"0:1#"s#zoh¦K"0#"s#o¦O"o2:1# � K�"s#¦K"0:1#"s#zd¦K"0#"s#
d

h
¦O"o2:1#

where the expression "18# of K"0#"s# reduces to its eight _rst terms[ But since the crack advance is
then characterized by the sin`le parameter d instead of a function d"s?#\ one may also write\ with
obvious notations]

K"s\ d# 0 K�"s#¦$
1K"s\ d#

1zd %d"s?#0d"s#

zd¦
0
1 $

11K"s\ d#

1"zd#1 %
C�"s#�9

d"s?#0d"s#

d¦O"d2:1#

and comparison with the preceding formula shows that the eight _rst terms of the expression "18#
of K"0# can be identi_ed with 0

1
ð11K"s\ d#:1"zd#1ŁC�"s#�9

d"s?#0d"s# h[
Let us now come back to the general case\ i[e[ let us introduce a non!uniform propagation rate

h"s?# and a non!zero C�"s?#[ The eight _rst terms of the expression "18#\ remain unchanged\4 so
that gathering the terms of the second group and accounting for the fact that B"s# admits a
universal expression in terms of the initial SIFs and the local kink angle ðsee eqn "17?#Ł\ one may
write K"0#"s# in the form

4 For the term A"s#h"s#\ where A"s# is given by eqn "16#\ this is because\ as mentioned in Section 2[1 above\ the
operator Z is independent of C�"s#[
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K"0# "s# 0
0
1 $

11K"s\ d#

1"zd#1 %
C�"s#�9

d"s?#0d"s#

h"s#¦C�"s#M"8"s## = K"s#h"s#¦N"8"s## = K"s#h?"s#

¦VP gF

Z"V\ s\ s?\ 8"s#\ 8"s?## = K"s?#ðh"s?#−h"s#Ł ds? "29#

where M"8# and N"8# are two new universal operators[
Equation "29# is the _rst fundamental formula for K"0# we wished to establish[ Note that it

comprises terms of both local and non!local character[ The unknown function h"s?# appears in the
local terms through its value and that of its _rst derivative at the point s\ and in the non!local one
through the ~uctuation h"s?#−h"s#[ On the other hand\ the unknown function C�"s?# appears only
in a local term[

The _rst and fourth terms of the right!hand side of eqn "29# are of non!universal character5 and
will have to be evaluated in each particular case\ but the second and third are universal[ The
operator M"8# describes the in~uence of the curvature of the crack extension in the Ox0x1 plane
and as such\ can be evaluated by considering the two!dimensional problem of a straight initial
crack with a kinked and curved extension in an in_nite medium "just as for the calculation of the
operator H"8# describing the in~uence of the parameter a� upon K"0:1#] see Part I\ Section 5#[ This
was done by Amestoy and Leblond "0881# for a plane loading\ thus providing the "numerical#
values of the components MI\I"8#\ MI\II"8#\ MII\I"8#\ MII\II"8#[ Leblond also considered the anti!
plane case in an unpublished work\ and obtained an analytical formula for MIII\III"8#[ These
numerical values and analytical formula are given in Appendix F[ The remaining components
MI\III"8#\ MII\III"8#\ MIII\I"8#\ MIII\II"8# are easily shown to be zero by considering a symmetry with
respect to the Ox0x1 plane[

In contrast with the operator M"8#\ the operator N"8# cannot be deduced from consideration
of plane problems\ since it describes the in~uence of the derivative of the propagation rate along
the crack front[ The values of its components were unknown until very recently\ except in the
special case of a zero kink angle[ Indeed in that case they can be deduced from the works of Rice
"0874#\ Gao and Rice "0875\ 0876a\ b# and Gao "0877# concerning coplanar extensions of initially
planar cracks^ these values read as follows]

NII\III "9# � −
1

1−n
\ NIII\II "9# �

1"0−n#
1−n

\ "20#

the other components being zero[ The full calculation of that operator\ for arbitrary values of the
kink angle\ was carried out in Lazarus| "0886# thesis\ using a method _rst proposed by Mouchrif
"0883# in his own thesis "see Section 4 below#\ and her numerical results are presented in Appendix
F[ ðThey agree with eqns "20# for 8 � 9[Ł

Also\ Appendix F provides the non!zero components of the non!universal operator Z"V\ s\ s?#

5 Remember that this means that they cannot be expressed solely in terms of the local geometric parameters and the
coe.cients of the local stress expansion before the kink\ but depend on the whole geometry of the body and the initial
crack considered[



J[!B[ Leblond et al[ : International Journal of Solids and Structures 25 "0888# 094Ð031019

taken from the work of Gao and Rice "0875#\ for the important special case of a semi!in_nite
plane crack in an in_nite body[

In the special case of a re`ular propa`ation "8"s?# 0 9\ a�"s?# 0 96#\ K"0:1# is zero by virtue of eqn
"08# of Part I plus the property G"9# � 9 "see Amestoy and Leblond\ 0881#[ Therefore\ if in
addition the propagation rate is uniform and C�"s# � 9\ the expansion of K"s\ d# takes the simple
form\ with obvious notations]

K"s\ d# 0 K"s#¦$
1K"s\ d#

1d %
C�"s#�9

d"s?#0d"s#

d¦O"d2:1#

so that it becomes logical\ and also simpler\ to change the notation 0
1
ð11K"s\ d#:1"zd#1ŁC�"s#�9

d"s?#0d"s#

into ð1K"s\ d#:1dŁC�"s#�9
d"s?#0d"s#[ For "a regular propagation but# arbitrary values of the propagation rate

and the curvature parameter C�"s#\ eqn "29# then becomes

K"0# "s# 0 $
1K"s\ d#

1d %
C�"s#�9

d"s?#0d"s#

h"s#¦C�"s#M"9# = K"s#h"s#

¦N"9# = K"s#h?"s#¦VP gF

Z"V\ s\ s?# = K"s?#ðh"s?#−h"s#Ł ds?[ "29?#

4[ Second formula for K"0#*The operator P"8#

Formulae "18# and "29# for K"0# say nothing about how the non!universal quantities A"s# and
0
1
ð11K"s\ d#:1"zd#1ŁC�"s#�9

d"s?#0d"s# are in~uenced by the function 8"s?# characterizing the direction of
propagation at all points of the crack front[ In general\ this will not be a drawback because\ as
already mentioned and explained in Section 6 below\ when one will make use of eqn "29# to derive
the values of C�"s# and d"s# along the crack front\ the kink angle will already be known everywhere
so that a numerical calculation of A"s# and 0

1
ð11K"s\ d#:1"zd#1ŁC�"s#�9

d"s?#0d"s# will always be possible[
However\ in a future theoretical study of crack front segmentation in mixed mode I¦III\ the kink
angle will not be known a priori so that it will become necessary to know how these quantities
depend upon the function 8"s?#[ The aim of this section is precisely to make this in~uence explicit[

By eqns "13# and "16#\ the value of A"s# for an arbitrary function 8"s?# can be related to that
for a uniform function] 8"s?# 0 8"s#\ [s?\ plus some corrective term as follows]

A"s# � ðA"s#Ł8"s?#08"s#¦lim
R:9 gF

F"8"s## = Z"V\ R\ s\ s?#

= ð"FT = F#"8"s?##−"FT = F#"8"s##Ł = K"s?# ds[

To evaluate that limit\ let us use the same kind of reasoning as above for the calculation of
PPL�"T"0##\ and decompose the crack front F into F−I and I 0 Łs−s\ s¦sð where s is an

6 Because a non!zero a�"s# would imply an in_nite curvature of the crack extension at the point s of the front[
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arbitrary positive number[ In the integral over F−I\ one can replace Z"V\ R\ s\ s?# by Z"V\ s\ s?#
in the limit R : 9 "Lemma 0# and the resulting integral tends towards

PV gF

F"8"s## = Z"V\ s\ s?# = ð"FT = F#"8"s?##−"FT = F#"8"s##Ł = K"s?# ds?

for s : 9 "the convergence of the integral in principal value being guaranteed by Lemma 1#[ The
integral over I can be written in the form

g
s¦s

s−s

F"8"s## = Z"V\ R\ s\ s?# = $"FT = F#"8"s?##−"FT = F#"8"s##

−
d
ds

ð"FT = F#"8"s##Ł"s?−s#% = K"s?# ds?

¦g
s¦s

s−s

F"8"s## = Z"V\ R\ s\ s?# =
d
ds

ð"FT = F#"8"s##Ł = K"s?#"s?−s# ds?[

The _rst integral here tends to 9 in the limit R : 9\ then s : 9 "Lemmas 1 and 2#[ In the second
one\ one may replace K"s?# by K"s#\ again by Lemmas 1 and 2\ and the resulting integral tends
towards

F"8"s## = $lims:9
lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?#"s?−s# ds?% =
d"FT = F#

d8
"8"s## = K"s#8?"s#

in the limit R : 9\ then s : 9[ Gathering these results\ one sees that

A"s# � ðA"s#Ł8"s?#08"s#¦F"8"s## = PV gF

Z"V\ s\ s?# = ð"FT = F#"8"s?##−"FT = F#"8"s##Ł = K"s?# ds?

¦F"8"s## = $lims:9
lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?#"s?−s# ds?% =
d"FT = F#

d8
"8"s## = K"s#8?"s#[

Inserting this formula into eqn "18# and reordering and grouping some terms together\ one gets]

K"0# "s# 0
0
1 $

11K"s\ d#

1"zd#1 %
C�"s#�9

d"s?#0d"s#\8"s?#08"s#

h"s#¦C�"s#M"8"s## = K"s#h"s#

¦N"8"s## = K"s#h?"s#¦P"8"s## = K"s#8?"s#h"s#

¦F"8"s## = PV gF

Z"V\ s\ s?# = ð"FT = F#"8"s?##h"s?#−"FT = F#"8"s##h"s#Ł = K"s?# ds?[ "21#

In this expression\ the notation 0
1
ð11K"s\ d#:1"zd#1ŁC�"s#�9

d"s?#0d"s#\8"s?#08"s# represents the value of
0
1
ð11K"s\ d#:1"zd#1ŁC�"s#�9

d"s?#0d"s# for a uniform kink an`le equal to 8"s# and P"8# is a new universal
operator[
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Equation "21# is the second fundamental formula for K"0#"s# that we wished to establish[ It splits
the in~uence of the function 8"s?# into two kinds of terms\ just as eqn "29# did for the function
h"s?#] local ones which involve only its value and that of its _rst derivative at the point s\ and a
non!local one proportional to an integral in principal value of the function
"FT = F#"8"s?##h"s?#−"FT = F#"8"s##h"s#[ The operator P"8# was calculated by Mouchrif "0883# in
his thesis\ using a combination of matched asymptotic expansions and Muskhelishvili|s method[
His numerical results are given in Appendix F[

Remark[ It is possible in the same way to make explicit the in~uence of the function K"s?#] the
formula obtained reads

K"0# "s# 0
0
1 $

11K"s\ d#

1"zd#1 %
C�"s#�9\K "s?#0K "s#

d"s?#0d"s#\8"s?#08"s#

h"s#¦C�"s#M"8"s## = K"s#h"s#

¦N"8"s## = K"s#h?"s#¦P"8"s## = K"s#8?"s#h"s#¦Q"8"s## = K?"s#h"s#

¦F"8"s## = PV gF

Z"V\ s\ s?# = ð"FT = F#"8"s?## = K"s?#h"s?#−"FT = F#"8"s## = K"s#h"s#Ł ds?

where Q"8# is a new universal operator[ However we shall not use this formula in the sequel[

5[ Comparison with the works of GaoÐRice and Nazarov

Gao and Rice|s precursory works in the domain are based on the use of Bueckner|s weight
functions[ The method employed requires the explicit knowledge of these functions\ which depend
upon the geometry of the body and the crack considered\ and must therefore be evaluated in each
particular case^ whence the obligation of considering only special cases[ Moreover\ it only applies
to coplanar extensions of initially plane cracks[ Thus\ Rice "0874# studied the case of a semi!in_nite
crack loaded in pure mode I^ his work was extended to arbitrary combinations of modes I\ II and
III by Gao and Rice7 "0875#[ Similarly\ Gao and Rice "0876a# considered a tensile penny!shaped
crack and their work was extended to arbitrary loadings by Gao "0877#[ Finally Gao and Rice
"0876b# studied the case of an external circular crack\ but only in mode I[ In all these works\ the
body considered was in_nite[ In each special case\ the authors established a detailed expression of
the term K"0# of the expansion of the SIFs in powers of the crack advance which fully agrees with
eqn "29?#[ The universality property of the operator N"9# was noticed by Gao "0877#\ from the
observation that this operator was the same for a semi!in_nite crack and a penny!shaped one^ his
"somewhat qualitative# argument was as follows] {{More intuitively it can be imagined that in the
very near neighborhood of some special point s along the circular crack front\ one would not be
able to tell whether the whole crack is a straight line or a circle of some _nite radius[ The above
argument remains valid even for an arbitrary\ smoothly curved crack[ For this reason\ expressions
"16# will be generally valid for the local slope e}ect on the variation of the relative crack dis!

7 Note however that the hypothesis of coplanar propagation is seldom veri_ed in the presence of mode II[
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placements when any smoothly curved crack front gets perturbed with a slope change dd"s#:ds at
location s along the crack front||[ On the other hand\ neither Gao nor Rice said anything about
the universality of the quantity lims?:s Z"V\ s\ s?#"s?−s#1\ although it was apparent on their results[

In a last paper\ Rice "0878# extended the analysis to the case of a plane crack with an arbitrary
contour loaded in pure mode I[ Again\ the results obtained are in full agreement with ours[

Nazarov|s "0878# method di}ers from both ours and that of Gao and Rice^ it is based on
matched asymptotic expansions "applied to the NeuberÐPapkovitch potentials of the problem#
combined with the BuecknerÐRice weight function theory[ The restrictive hypotheses on the
geometry and loading considered are the same as in the work of Rice "0878#[ The result obtained
fully agrees with that of Rice and ours and clearly evidences the universality of the quantity
lims?:s ZI\I"V\ s\ s?#"s?−s#1[

In conclusion\ it appears that the major originality of the present work lies in the fact that it can
deal with arbitrarily shaped cracks with arbitrary kinked and curved extensions\ which is essential
to deal with mixed mode situations[ It is remarkable that the method employed\ although admit!
tedly quite technical with its three lemmas\ makes no great di}erence between the planar and non!
planar cases[

6[ Prediction of the propagation path

The expression of the expansion of the SIFs in powers of the crack advance being now available\
one can determine the successive positions of the crack by applying some propagation criterion to
these SIFs[ That which will be considered here is a combination of Goldstein and Salganik|s "0863#
{{principle of local symmetry|| "PLS# and some energetic criterion of the Gri.th type]

KII "s\ t# � 9^ G"s\ t# 0
0−n1

E
K1

I "s\ t#¦
0¦n

E
K1

III "s\ t#

0 LpqKp"s\ t#Kq"s\ t# � Gc "[s\ [t × 9# "22#

where t denotes time\ G the energy release rate and Gc its critical value[ Note that these equations
imply\ in the limit t : 9\ that K�II "s# � 9 and G�"s# 0 ð"0−v1#:EŁK�I

1"s#¦ð"0¦n#:EŁK�III
1"s# � Gc[

This criterion stipulates that the kink angle depends only on the ratio KII:KI and not on KIII ðsince
K�II depends only on KI and KII] see eqns "7# and "8# of Part IŁ^ thus it disregards the phenomenon
of crack front segmentation in mode I¦III\ which precisely consists in oscillations of the kink
angle along the crack front of short wavelength about a zero mean value arising from the presence
of some mode III[ Doing this is acceptable from a macroscopic point of view[ The theoretical
study of crack front segmentation at the microscopic scale will be the subject of another paper[

6[0[ Introduction of a variable loadin`

All expansions of the SIFs obtained in Part I and here were obtained under the assumption of
a constant loading[ It now becomes necessary to introduce a temporal variation of that loading in
order to respect the energetic criterion at all instants[ It will be assumed here that the loading
varies proportionally\ i[e[ through multiplication by some scalar m"t# depending only on time\ and
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taking the value 0 at time t � 9[ The expansion of that scalar in powers of t\ which is imposed by
the experimenter\ does certainly not contain fractional powers and may thus be written as

m"t# 0 0¦m¾ t¦
m�
1

t1¦O"t2#[ "23#

To obtain the expansion of the SIFs under a variable loading\ one may then proceed as follows[
First\ replace oh"s?# 0 d"s?# by its expansion in powers of t in the expressions of the SIFs derived
above^ this yields the expansion of the SIFs in powers of t under constant loading[ Second\ using
the fact that the solution of an elasticity problem does not depend upon the history of the loading\
and thus that the SIFs at the instant t can be obtained by assuming the loading to be constant and
equal to its present value\ multiply the preceding expansion by 0¦m¾ t¦m� t1:1¦O"t2# and reorder
the terms to get the _nal expansion of the SIFs under variable loading[

6[1[ Theoretical determination of the `eometric parameters of the crack extension*Case of re`ular
propa`ation

Let us _rst assume that the propagation path is regular[ In this case the kink angle 8"s# is
identically zero and so is also a�"s#[ K�"s# is identical to K"s# because F"9# � 0\ and K"0:1#"s# is zero
because a�"s# � 9 and G"9# � 9 ðsee eqn "08# of Part I and Amestoy and Leblond\ 0881Ł[ The
procedure described above then leads to

K"s\ t# � K"s#¦6$
1K"s\ d#

1d %
C�"s#�9

d"s?#0d"s#

d¾ "s#¦C�"s#M"9# = K"s#d¾ "s#¦N"9# = K"s#d¾?"s#

¦PV gF

Z"V\ s\ s?# = K"s?#ðd¾ "s?#−d¾ "s#Ł ds?¦m¾K"s#7 t¦O"t1#[ "24#

Application of the criterion ðeqns "22#Ł at order t9 � 0 then yields KII"s# � 9 and
ð"0−n1#:EŁK1

I "s#¦ð"0¦n#:EŁK1
III "s# � Gc " for all s#^ the second condition here determines the

intensity of the loading[ To respect the criterion "22# at order t0 � t\ one must equate to 9 the terms
of this order in the expansions of KII"s\ t# and G"s\ t#[ The {{energetic|| part of the criterion yields

LpqKp"s#Kþq"s# � 9\ p\ q � I\ III[

Inserting this equation into "24#\ one gets

LpqKp"s# $
1Kq"s\ d#

1d %
C�"s#�9

d"s?#0d"s#

d¾ "s#

¦LpqKp"s# = PV gF

Zqr"V\ s\ s?#Kr"s?#ðd¾ "s?#−d¾ "s#Ł ds?¦m¾Gc � 9[ "25#

The terms LpqKp"s#C�"s#Mqr"9#Kr"s#d¾ "s# and LpqKp"s#Nqr"9#Kr"s#d¾?"s# which should appear here are
in fact zero[ For the _rst one\ this is because KII"s# �9\ MI\I"9# �MIII\III"9# �9 and MI\III"8#0
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MIII\I"8# 0 9 "see Appendix F and Section 3 above#[ For the second one\ this is because\ as was
seen in Section 3\ the only non!zero components of N"9# are NII\III"9# and NIII\II"9#\ which appear
multiplied by KII"s# � 9[

Equation "25# is an integral equation on the propagation rate d¾ "s# which allows for its deter!
mination independently of the curvature parameter C�"s#[ Next\ the {{PLS|| part of the criterion
yields the value of this parameter in terms of the propagation rate]

C�"s# � −
1

KI "s# $
1KII "s\ d#

1d %
C�"s#�9

d"s?#0d"s#

¦
1

KI "s#d¾ "s# 6
1

1−n
KIII "s#d¾?"s#−VP gF

ZII\q"V\ s\ s?#Kq"s?#ðd¾ "s?#−d¾ "s#Ł ds?7[ "26#

Use has been made here of the properties MII\III"8# 0 9\ MII\I"9# � 0:1\ NII\I"9# � 9\
NII\III"9# � −1:"1−n# "see Section 3 above\ Appendix F and eqn "20#0#[ One interesting feature of
this formula is the presence of a term proportional to KIII"s#d¾?"s# in the expression of C�"s#\ which
is a typical three!dimensional e}ect[ It can be veri_ed that for a semi!in_nite plane crack loaded
in mode I¦III\ this term is the only one which is non!zero[ Thus\ if KIII is uniform\ or simply has
a constant sign along the front\ C�"s# takes opposite values on both sides of a local protrusion of the
front^ that is\ there are deviations from planarity of opposite sign on these two sides[ This e}ect
was foreseen by Gao and Rice "0875a#\ as appears in the following quotation] {{As is evident from
the exact _rst order results in eqns "04#\ mode III loading induces a mode II stress intensity
wherever dd"s#:ds � 9[ This induced KII reverses sign with the change in sign of dd"s#:ds in going
from one side to the other of a localized protrusion[ This change in sign of KII is expected to
promote deviations from planarity of opposite sense on the two sides of the protrusions||[ This
argument was not fully satisfactory\ however\ because it was based on the observation of the
appearance of a non!zero KII\ which was contradictory with the basic assumption made by the
authors of coplanar propagation[

6[2[ Theoretical determination of the `eometric parameters of the crack extension*Case of a kinked
extension

Let us now consider the case where the kink angle is non!zero[ The propa`ation rate d¾ "s# is then
necessarily zero[ Indeed if it were not\ zd"s\ t# would be proportional to zt for small t\ so that
the expansion of G"s\ t#\ prior to introduction of the e}ect of the variation of the loading\ would
involve a term proportional to zt[ Introduction of that e}ect would not introduce any com!
pensating term\ since the expansion "23# of m"t# does not involve fractional powers[ It would thus
be impossible to respect the criterion G"s\ t# � Gc at all instants[ In other words\ if there is a kink\
the crack advance d"s\ t# varies necessarily like t1 and not t for small t[ Accounting for this
peculiarity and following the procedure indicated in Section 6[0\ we get the expansion of the SIFs
in the form
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K"s\ t# � F"8"s## = K"s#¦6ðG"8"s## = T"s#¦a�"s#H"8"s## = K"s#Łzd� "s#:1

¦m¾F"8"s## = K"s#7 t¦O"t1#[ "27#

Applying the criterion "22#0 at order t9 � 0\ one gets

K�II "s# � FII\I "8"s##KI "s#¦FII\II "8"s##KII "s# � 9\ "28#

which determines the kink angle 8"s# along the crack front as a function of "KII:KI#"s#[ The
{{energetic|| part "22#1 of the criterion yields

G�"s# �
0−n1

E
K�I

1"s#¦
0¦n

E
K�III "s# � LpqK�p"s#K�q"s# � Gc\ "39#

which _xes the intensity of the loading[
At order t0 � t\ one _rst gets from "22#0\ accounting for the properties of the operators G"8#

and H"8# ðsee eqn "19# of Part IŁ]

a�"s# � −
GII\I "8"s##TI "s#
HII\q"8"s##Kq"s#

\ q � I\ II[ "30#

This determines a�"s# independently of d� "s#[ This acceleration then follows from eqn "22#1]

d� "s# � 1 $
m¾Gc

LpqFpr"8"s##Kr"s#ðGqs"8"s##Ts"s#¦a�"s#Hqs"8"s##Ks"s#Ł%
1

[ "31#

Finally\ we shall not write the equations obtained at order t1\ because they are extremely heavy\
but just mention that here again\ C�"s# can be determined independently of dÝþ"s#^ dÝþ"s# then follows
from a purely local formula\ because what is involved in the integral term appearing in that formula
is d� "s# "which is already known at that stage# and not dÝþ"s#[

It thus appears that it is always possible to separately determine the crack advance and the other
geometric parameters of the crack extension[ In the case of regular propagation\ the propagation
velocity d� "s# comes _rst\ and the curvature C�"s# of the extension follows[ If there is a kink\ just
the opposite occurs] 8"s# and a�"s# come _rst\ then d� "s#^ at the next order\ C�"s# comes _rst and
then dÝþ"s#[

6[3[ Numerical determination of the crack path over arbitrary distances

The theoretical formulae "25#\ "26#\ "28#\ "30#\ "31# only allow to predict the evolution of the
crack in the near future\ and provided that the mechanical quantities involved are known[ Numeri!
cal step!by!step methods can remove these restrictions[ Let us consider the case of regular propa!
gation "8"s?# 0 9\ a�"s?# 0 9# for instance[ The initial geometry being known\ one can compute
the initial SIFs[ The derivatives ð1Kp"s\ d#:1dŁC�"s#�9

d"s?#0d"s# can be evaluated by adding a small\ straight
"C�"s# � 9# extension with uniform length "d"s?# 0 Cst[# and comparing the SIFs along the front
of the extended crack with the initial ones[ Finally\ using eqn "29?#\ the components of the non!
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universal operator Z"V\ s\ s?# can be determined by creating a small protrusion of the crack front
in the vicinity of the point s? and examining the resulting e}ect on the SIFs at the point s[ The fact
that the quantities lims?:s Zpq"V\ s\ s?#"s?−s#1 are universal and known "see eqns "B3# of Appendix
B# should be a great help there[ All coe.cients in the left!hand side of eqn "25# being then known\
discretization and numerical solution of this equation yield the propagation rate d¾ "s# along the
front[ The curvature C�"s# then follows from eqn "26#[ It only remains to numerically extend the
crack according to the parameters determined "remeshing operation# to proceed to the next step[

7[ A few simple applications

We shall _nally envisage some simple applications which do not require the calculation of the
non!universal operator Z"V\ s\ s?# for the speci_c geometry considered as a prerequisite "see Leb!
lond et al[ "0885# for an application that does require this calculation#[ Just as in the preceding
section\ we adopt the point of view that the PLS applies even in the presence of mode III on a
macroscopic scale[

7[0[ Con_`urational stability of the front of a propa`atin` crack

Following the works of Gao and Rice quoted above\ we shall now examine the question of the
stability of the {{fundamental|| con_guration of the front vs in!plane perturbations within the new
tangent plane to the crack[8 For a given sinusoidal perturbation h"s# of the crack front\ stability
will prevail if the maxima of h"s# coincide with the minima of G"s\ o# "and vice versa#\ and instability
will prevail if the maxima of these quantities coincide[ We shall distinguish between the case of
regular propagation and that of a kinked extension[

In the case of regular propagation "8"s# 0 9cKII"s# 0 9#\ we shall follow the works of Rice
and Gao quoted above and consider the cases of a semi!in_nite crack and a penny!shaped one[
For a semi!in_nite crack loaded in mode I¦III\ it was concluded by Gao and Rice "0875# that the
straight con_guration of the front was stable vs in!plane sinusoidal perturbations of all wavelengths[
On the other hand\ for a penny!shaped crack loaded in torsion "pure mode III#\ Gao "0877# found
that the circular con_guration of the front was unstable vs in!plane sinusoidal perturbations
provided that there were less than "7−4n#:"1¦n# wavelengths in the perimeter of the crack[
However\ these conclusions were obtained assuming the propagation to be coplanar\ which is
generally wrong because\ as discussed above\ C�"s# is generally non!zero in the presence of mode
III ðsee eqn "26#Ł[ Therefore the following question naturally arises] will these conclusions be
a}ected by non!coplanarity<

In eqn "29?#\ the components K "0#
I "s# and K "0#

III "s# happen to be independent of the value of C�"s#\
because of the properties MI\I"9# � MIII\III"9# � 9\ MI\III"8# 0 MIII\I"8# 0 9 "see Appendix F and

8 Note that the kind of stability discussed here deals with the shape of the crack front in the Ox�0x2 plane\ where
"Ox�0x�1x2# denotes the frame {{adapted|| to the crack extension "see Fig[ 2 of Part I#^ it should not be confused with the
sort of stability envisaged by Cotterell and Rice "0879# and in Part I\ which considers the shape of the crack in the Ox0x1

plane[
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Section 3 above#[ It follows that the same is true of G"s\ t# � ð"0−n1#:EŁK1
I "s\ t# ¦ð"0¦n#:EŁ

K1
III "s\ t# at order t0 � t\ so that accountin` for the non!zero value of C�"s# does not chan`e Gao and

Rice|s conclusions in any way[
Now consider the case where KII"s# % 9c8"s# % 9\ for instance a tunnel!crack loaded in mode

I¦II through uniform stresses s�
00\ s�

01\ s�
11 exerted at in_nity[ The expansion of G"s\ o# at order

zo then reads\ by eqns "06# and "08# of Part I]

G"s\ o# � LpqK�pK�q¦1LpqK�p ðGqr"8#Tr¦a�Hqr"8#KrŁzoh"s#¦O"o#\

where K�p � Fps"8#Ks and a� is given by eqn "30#[ "Certain dependencies upon the position s along
the crack front disappear here because of translational invariance in the direction of that front[#
It follows that the fact that the maxima of h"s# "or d"s## and G"s\ o# coincide or not is totally
independent of the wavelen`th of the perturbation and depends only on the si`n of the quantity
LpqK�p ðGqr"8#Tr¦a�Hqr"8#KrŁ 0 ð"0−n1#:EŁK�I ðGI\I "8#TI¦a�HIr"8#KrŁ] stability prevails if this
quantity is negative[ Now K�I must be positive for the crack extension to be opened\ GI\I"8# is
positive "see Amestoy\ 0876# and HIr"8#Kr happens to be very small for that value of 8 which
ensures the condition K�II � 9[ Hence the condition of stability simply reads

TI ³ 9[

"Note\ again\ that although this condition is exactly the same as that found by Cotterell and Rice\
0879\ we are not dealing here with the same kind of stability[# Hence\ if the stresses imposed at
in_nity are such that TI 0 s�

00−s�
11 × 9\ s�

00 × s�
11\ one should observe\ after kinking\ unstable

undulations of the crack front in the new tangent plane to the crack[ "This conclusion is arrived
at by considering only the _rst two terms\ proportional to o9 � 0 and o0:1\ of the expansion of
G"s\ o# in powers of o[ This means that stability may prevail again once the crack has propagated
over a su.cient distance and the third term\ proportional to o0 � o\ becomes important[#

7[1[ Bifurcation of the propa`ation path

We now consider the problem of uniqueness of the propagation path\ as determined following
the procedures described above[ Again\ we shall distinguish between the case of regular propagation
and that of a kinked extension[

In the case of regular propagation\ we have seen that the propagation rate is determined by the
inte`ral equation "25#[ It follows that uniqueness of d¾ "s# is not guaranteed[ For instance\ Leblond
et al[ "0885# have considered the case of a tensile "mode I# tunnel!crack[ They have shown that
there is a sinusoidal bifurcation mode which is symmetric with respect to the axis of the tunnel!
crack and the wavelength of which is 5[682a where a is the half!width of the crack[ Another
interesting example is provided by the penny!shaped crack in torsion "pure mode III# considered
by Gao "0877#[ For that con_guration\ there is a possible sinusoidal bifurcation mode\ with
"7−4n#:"1¦n# wavelengths in the perimeter of the crack[ However\ for this bifurcation mode to
exist\ this number must be an integer\ which implies that n must be equal to "7−1n#:"n¦4# where
n is an integer^ in practice\ since 9 ³ n ³ 0:1\ this imposes n � 0:3 "with n � 2#\ which will never
be satis_ed exactly[ One sees that the essential di}erence between the two examples is that the
crack front is _nite in the second one^ this creates a {{quantization|| of wavelengths which rules out
the critical bifurcation wavelength[
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If there is a kink\ we have seen that all geometric parameters of the crack extension are
determined by purely local equations "integrals do remain\ but they do not involve unknowns#[ It
follows that any bifurcation is precluded in the presence of mode II\ at least if the expansion of the
SIFs is limited to order t1\ as was done here[
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Appendix A

The aim of this Appendix is to establish Lemma 0 of the text[
We shall begin by re!interpreting the components of the operator Z"V\ R\ s\ s?# in a simpler way[

Our primary interpretation is provided by eqn "03# of the text[ Remember that K "i#
r "V\ s?\ M# is the

r!th SIF generated at the point s? of the initial crack front by a unit point force exerted on the
point M in the direction Ei 0 1OM:1Xi\ with u � 9 on 1Vu and t � s = n � 9 on 1Vt *the problem
thus de_ned will be called Problem A[ The vector Kr"V\ s?\ M# 0 ðK "0#

r \ K "1#
r \ K "2#

r Ł"V\ s?\ M# being
then re!interpreted as a displacement at the point M\ "LM = Kr"V\ s?\ M##1S"s\R# is the traction _eld\
on the boundary of the sphere S"s\ R# of center s and radius R\ corresponding to the displacement
_eld "Kr"V\ s?\ M##[ Finally LpðR\ C\ G^ "LM = Kr"V\ s?\ M##1S"s\R#Ł is the p!th SIF at the point s of
the initial crack front generated by these tractions[

Let "s?\ r?# denote a point on the crack lips "r? representing the _rst polar coordinate in the plane
orthogonal to the crack front at the point s?#[ For the Problem A just de_ned\ the discontinuity
]u"i#

j ^"s?\ r?# of the j!th component\ in the general\ _xed basis "E0\ E1\ E2# of the displacement u"i# at
the point "s?\ r?# is given by

]u"i#
j ^"s?\ r?# � 1D−0

jp "s?#LpqK
"i#
q "V\ s?\ M#zr?¦O"r?# "A0#

where L is the matrix de_ned by eqn "09# of the text and D−0"s?# a matrix characterizing the
orientation of the local basis {{adapted|| to the crack at the point s? of the "initial# crack front with
respect to the general one[ We then de_ne a unit doublet09 of direction Ej\ applied on the point s?
of the "initial# crack front\ as the limit\ for r? : 9\ of a loading consisting of two opposite forces
parallel to Ej\ with intensity 0:zr?\ applied on the points "s?\ r?#2 of the upper and lower lips of
the crack[ Let us de_ne Problem B as that where such a doublet is applied on s?\ 1Vu being clamped
and 1Vt free of tractions\ and v" j#

i "V\ M\ s?# as the i!th component of the resulting displacement at
the point M "again\ the argument V underlines the dependence upon the whole geometry of the
body and crack considered via the boundary conditions#[ Applying Betti|s theorem to Problems
A and B\ we get

09 A doublet\ which is necessarily exerted on a point of the crack front\ should not be confused with a dipole "see Part
I\ Section 2#\ which can be applied anywhere in the body[
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v" j#
i "V\ M\ s?# � 1D−0

jp "s?#LpqK
"i#
q "V\ s?\ M#c 1LpqK

"i#
q "V\ s?\ M# � Dpj"s?#v" j#

i "V\ M\ s?#

or\ in vectorial form]

1LpqKq"V\ s?\ M# � Dpj"s?#v" j# "V\ M\ s?#[

It follows from that result that eqn "03# of the text may be rewritten as

Zpq"V\ R\ s\ s?# � Dqj"s?#Lp ðR\ C\ G^ "LM = v" j# "V\ M\ s?##1S"s\R#Ł[ "A1#

According to this equation\ the components of the operator Z"V\ R\ s\ s?# are connected\ through
some multiplicative factors Dqj"s?#\ to the SIFs generated at the point s of the initial crack front by
the application\ on the boundary of the sphere S"s\ R#\ of the traction _elds "LM = v"j#"V\ M\ s?##
" j � 0\ 1\ 2#[ These traction _elds correspond to the displacement _elds "v"j#"V\ M\ s?## resulting
from the application of unit doublets at the point s? of the initial crack front\ 1Vu being clamped
and 1Vt free of tractions[ This interpretation of the components Zpq"V\ R\ s\ s?# is more appealing
than the preceding one resulting from eqn "03# of the text\ because the formation of the tractions
from the displacements is more natural] v"j#"V\ M\ s?# is directly de_ned as a displacement at the
point M\ whereas Kr"V\ s?\ M# initially represented a set of SIFs at the point s? of the initial crack
front and had to be re!interpreted as a displacement at M before one could take the corresponding
traction[

We shall have to distinguish between the cases R ³ D"s\ s?# and R × D"s\ s?#[ Only the _rst one
will be considered here[

Let us consider\ in addition to Problem B de_ned above\ Problem C where the exterior of the
sphere S"s\ R# "including the doublet at s?\ since D"s\ s?# × R# is eliminated while the traction _eld
"LM = v"j#"V\ M\ s?## of Problem B is preserved on 1S"s\ R#[ The SIFs are obviously the same in the
two problems[ Let K " j#

p "V\ s\ s?# denote the p!th SIF at s in Problem B[ "This SIF is obviously not
a function of R\ since this parameter does not appear in the de_nition of that problem[# The p!th
SIF at s in Problem C is\ by de_nition\ LpðR\ C\ G^ "LM = v"j#"V\ M\ s?##1S"s\R#Ł[ Therefore\

K " j#
p "V\ s\ s?# � Lp ðR\ C\ G^ "LM = v" j# "V\ M\ s?##1S"s\R#Ł

which implies\ by eqn "A1#\ that

[R ³ D"s\ s?#] Zpq"V\ R\ s\ s?# � Dqj"s?#K " j#
p "V\ s\ s?# 0 Zpq"V\ s\ s?# "A2#

where it clearly appears that Zpq"V\ R\ s\ s?# is in reality independent of R for R ³ D"s\ s?# "its value
in such conditions is simply noted Zpq"V\ s\ s?##[ This establishes Lemma 0[

Appendix B

The goal of this Appendix is to prove Lemma 1 of the text[
We begin by studying the second case distinguished in Appendix A\ where R × D"s\ s?#[ Just as

in the _rst one\ the Zpq"V\ R\ s\ s?# are connected to the SIFs at the point s of the initial crack front
arising from the traction _elds "LM = v"j#"V\ M\ s?## " j � 0\ 1\ 2# exerted on the boundary of the
sphere S"s\ R# "Problem C#\ and the traction _eld "LM = v"j#"V\ M\ s?##1S"s\R# arises from the appli!
cation of a unit doublet in the direction Ej on the point s? of the front\ 1Vu being clamped and 1Vt
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free of tractions "Problem B#[ The novelty is that the point s? now lies within S"s\ R#[ One must
then take care of the fact that in Problem C\ the loading consists only of the surface tractions "on
1S"s\ R## LM = v"j#"V\ M\ s?#\ the doublet at s? bein` eliminated[ Let us therefore de_ne Problems D
and E in the following way] in Problem D\ the exterior of S"s\ R# is eliminated while the traction
_eld "LM = v"j#"V\ M\ s?##1S"s\R# and the doublet at s? are preserved^ in Problem E\ the sole doublet is
applied on the point s?\ 1S"s\ R# being free of tractions[ With obvious notations\ one then
has C 0 D−E[ Now\ as already mentioned\ the p!th SIF at s in Problem C is\ by de_nition\
LpðR\ C\ G^ "LM = v"j#"V\ M\ s?##1S"s\R#Ł[ In Problem D\ it is the same as in Problem B\ that is\
K " j#

p "V\ s\ s?#[ Finally we shall denote K " j#
p "R\ s\ s?# that in Problem E^ this notation is coherent with

the notation K " j#
p "V\ s\ s?#\ the body V being here the sphere S"s\ R#\ free of boundary tractions[

Therefore

Lp ðR\ C\ G^ "LM = v" j# "V\ M\ s?##1S"s\R#Ł � K " j#
p "V\ s\ s?#−K " j#

p "R\ s\ s?#

which implies\ by eqn "A1#\ that

[R × D"s\ s?#] Zpq"V\ R\ s\ s?# � Dqj"s?#ðK " j#
p "V\ s\ s?#−K " j#

p "R\ s\ s?#Ł[ "B0#

We now come to the proof of Lemma 1 itself[ Its principle is to introduce\ for every R9 such
that S"s\ R# W S"s\ R9# W V and every s? $ S"s\ R9#\ some operator Z"R9\ R\ s\ s?# identical to
Z"V\ R\ s\ s?# except for the replacement of the body V by the sphere S"s\ R9#\ free of boundary
tractions[ We shall then show that the quantity lims?:s Z"V\ s\ s?#"s?−s#1 can be evaluated by
replacing Z"V\ s\ s?# by Z"R9\ s\ s?# "quantity de_ned as the constant value of Z"R9\ R\ s\ s?# for
R ³ D"s\ s?#\ just as for Z"V\ R\ s\ s?# and Z"V\ s\ s?##[ As a result\ the problem will no longer be
posed on an arbitrary body V but on the sphere S"s\ R9#[ We shall then use the homogeneity
properties of the quantity lims?:s Z"R9\ s\ s?#"s?−s#1 and shrink R9 to 9 in order to establish its
universality[ Finally\ we shall refer to the work of Gao and Rice "0875# devoted to the special case
of a semi!in_nite crack with a slightly wavy front to identify the values of the components of this
universal quantity and check that they are _nite[

Equation "B0#\ used with V 0 S"s\ R9#\ yields

[R × D"s\ s?#] Zpq"R9\ R\ s\ s?# � Dqj"s?#ðK " j#
p "R9\ s\ s?#−K " j#

p "R\ s\ s?#Ł[

Taking the di}erence with eqn "B0#\ we get

Zpq"V\ R\ s\ s?#−Zpq"R9\ R\ s\ s?# � Dqj"s?#ðK " j#
p "V\ s\ s?#−K " j#

p "R9\ s\ s?#Ł 0 Zpq"V\ R9\ s\ s?#\

where we have re!used eqn "B0# with R 0 R9 "×D"s\ s?##[ A priori\ this result only applies for
R × D"s\ s?#\ but using eqn "A2# for V and S"s\ R9#\ one sees that it is also valid if R ³ D"s\ s?#[
Thus\ the di}erence Z"V\ R\ s\ s?#−Z"R9\ R\ s\ s?# is independent of R\ no matter whether R is
smaller or greater than D"s\ s?#[ Furthermore\ its components\ i[e[ the quantities Zpq"V\ R9\ s\ s?#\
are tied through some multiplicative factors to the SIFs at s generated by the application of traction
_elds of the form "LM = v"j#"V\ M\ s?## on 1S"s\ R9#\ and these traction _elds themselves arise from
the application of unit doublets at s?\ 1Vu being clamped and 1Vt free of tractions[ Now\ when the
point s? moves along the crack front\ even in the vicinity of s\ the traction _eld on 1S"s\ R9#
generated by the doublet applied on s? varies continuously and remains _nite\ and so do also the
SIFs at s resulting from these tractions "the doublet at s? being eliminated#[ It follows that
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Zpq"V\ R9\ s\ s?# is a continuous function of s?\ taking a _nite value for s? � s[ In brief\ we have
shown at that stage that the difference Z"V\ R\ s\ s?#−Z"R9\ R\ s\ s?# is independent of R\ continuous
with respect to s? and _nite for s? � s[

This di}erence\ being independent of R\ is equal to its limit for R : 9\ i[e[ Z"V\ s\ s?#−Z"R9\ s\ s?#
by de_nition of Z"V\ s\ s?# and Z"R9\ s\ s?#[ Hence\ by what precedes\

lim
s?:s

ðZ"V\ s\ s?#−Z"R9\ s\ s?#Ł"s?−s#1 � 9c lim
s?:s

Z"V\ s\ s?#"s?−s#1 � lim
s?:s

Z"R9\ s\ s?#"s?−s#1

"B1#

"the two last limits being possibly in_nite#[
We shall now show that the quantity lims?:s Z"R9\ s\ s?#"s?−s#1 is universal and therefore\ by

eqn "B1#\ that the same is true of lims?:s Z"V\ s\ s?#"s?−s#1[ We set

lim
s?:s

Z"R9\ s\ s?#"s?−s#1 0 M"R9\ C\ G# "B2#

"note that the parameters a�\ C�\ oh and h?:h characterizing the geometry of the crack extension
are absent here\ since the problems which de_ne Z"R9\ s\ s?# only involve the initial crack#[

Let us study the homogeneity properties of the function M"R9\ C\ G#[ If all distances and
displacements are multiplied by some positive factor l\ the stresses remain unchanged[ The equi!
librium equations imply that the body forces are divided by l\ so that point forces\ which are
homogeneous to some body force times some volume\ are multiplied by l1[ A unit doublet applied
at the distance r? ":9# of the "initial# crack front\ consisting of point forces of intensity 0:zr?\ is
now applied at the distance lr? of the crack front and its intensity is l1:r?[ To transform it into a
unit doublet involving forces of intensity 0:zlr?\ one must\ using linearity\ re!multiply the dis!
placements and stresses by l−4:1[ The net result is that while distances are multiplied by l\
displacements are multiplied by l = l−4:1 � l−2:1 and stresses by l−4:1[ In this operation\ the SIFs
K " j#

p "R9\ s\ s?#\ which are limits of certain stress components times the square root of a vanishingly
small distance\ are multiplied by l−4:1 = l0:1 � l−1[ Using eqn "A2#1 and noting that the matrix D"s?#
introduced in eqn "A0# remains invariant while distances are multiplied by l\ one sees that
Zpq"R9\ s\ s?# is also multiplied by l−1[ It immediately follows from there and the de_nition "B2# of
the function M"R9\ C\ G# that it veri_es the following property] M"lR9\ C:l\ G:l# � M"R9\ C\ G#[
Using this relation with l � 0:R9 and R9 : 9\ we get M"R9\ C\ G# � M"0\ 9\ 9#\ which shows that
lims?:s Z"R9\ s\ s?#"s?−s#1 does not depend on any geometric parameter whatsoever\ i[e[ that it is a
universal quantity[

Gao and Rice "0875# have studied the special case of a semi!in_nite planar crack with a slightly
wavy front[ For a crack advance oh"s?# which is zero in some open interval I containing the point
s\ they _nd that

K "0#
I "s# �

0
1p gR−I

KI "s?#h"s?# ds?

"s?−s#1
^ K "0#

II "s# �
0
1p

1−2n

1−n gR−I

KII "s?#h"s?# ds?

"s?−s#1
^

K "0#
III "s# �

0
1p

1¦n

1−n gR−I

KIII "s?#h"s?# ds?

"s?−s#1
[
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Now it is easy to see\ using eqns "7#\ "8# and "02# of the text and Lemma 0\ that for such a crack
advance\

K"0# "s# � gR−I

Z"V\ s\ s?# = K"s?#h"s?# ds?[

Comparison with Gao and Rice|s formulae show that

lim
s?:s

ZI\I "V\ s\ s?#"s?−s#1 �
0
1p

^ lim
s?:s

ZII\II "V\ s\ s?#"s?−s#1 �
0
1p

1−2n

1−n
^

lim
s?:s

ZIII\III "V\ s\ s?#"s?−s#1 �
0
1p

1¦n

1−n
\ "B3#

other components being zero[ This shows that these limits are _nite and _nishes the proof of
Lemma 1[

Remark[ The preceding results clearly evidence the di}erence of the behaviors of Z"V\ R\ s\ s?# "R
being _xed# and Z"V\ s\ s?# for s? : s[ Indeed we have seen above that Z"V\ R9\ s\ s?# is a continuous
function of s? taking some _nite value for s? � s\ and the same is of course true of Z"V\ R\ s\ s?#[
On the contrary\ Lemma 1 stipulates that Z"V\ s\ s?# diverges like "s?−s#−1 for s? : s[ This clearly
shows that the convergence of Z"V\ R\ s\ s?# towards Z"V\ s\ s?# for R : 9 cannot be uniform with
respect to s? for s? close to s[

Appendix C

In this Appendix\ we establish Lemma 2 of the text[
Let us _rst note that it is su.cient to prove that for any function f"s?# which is O""s?−s#1# for

s? : s\

lim
R:9 gF

Zpq"V\ R\ s\ s?# f"s?# ds? � gF

Zpq"V\ s\ s?# f"s?# ds?[

According to eqns "A2# and "B0#\ the integrands here di}er only for D"s\ s?# ³ R\ the di}erence
being then Dqj"s?#K " j#

p "R\ s\ s?# f"s?#[ Hence the problem is reduced to showing that the integral

gF+S"s\R#

Dqj"s?#K " j#
p "R\ s\ s?# f"s?# ds?

tends to zero with R[
Let us expand the function f"s?# to the third order with respect to s?−s in the vicinity of the

point s]

f"s?# � 0
1
f ý"s#"s?−s#1¦0

5
f 1"s#"s?−s#2

"it can be checked a posteriori that pursuing the expansion up to higher orders would not introduce
any change in the conclusion to be reached#[ Let us set
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gF+S"s\R#

Dqj"s?#K " j#
p "R\ s\ s?# f"s?# ds?

� gF+S"s\R#

Dqj"s?#K " j#
p "R\ s\ s?#

f ý"s#
1

"s?−s#1 $0¦
f 1"s#
2f ý"s#

"s?−s#% ds? "C0#

0 f ýN"R\ C\ G\ f 1:f ý#[

"Remember that the various parameters are implicitly taken at the point s\ as usual\ in the last
expression[# We have seen in Appendix B that the quantities K " j#

p "R\ s\ s?# are positively homo!
geneous of degree −1[ If we decide\ while multiplying all distances by a positive factor l\ to keep
the function f unchanged\ the left!hand side of eqn "C0# is multiplied by l−0 in the process[ Since
f ý is multiplied by l−1\ it follows that N is multiplied by l]

N"lR\ C:l\ G:l\ f 1:"lf ý## � lN"R\ C\ G\ f1:f ý#[

Applying this formula with l � 0:R and R : 9\ we get

N"R\ C\ G\ f 1:f ý# � RN"0\ RC\ RG\ Rf 1:f ý# � RðN"0\ 9\ 9\ 9#¦O"R#Ł[ "C1#

Thus\ unless N"0\ 9\ 9\ 9# is in_nite\ N"R\ C\ G\ f 1:f ý# is O"R# and goes to 9 with R\ which is the
desired result[ Therefore\ the problem is reduced to showing that N"0\ 9\ 9\ 9# is _nite[

Up to the factor f ý\ this expression is nothing else than the integral we started with\
ÐF+S"s\R# Dqj"s?#K " j#

p "R\ s\ s?# f"s?# ds?\ for certain values of the geometric parameters[ The problem is
to show that this integral is convergent\ which is not a triviality because of the singular behavior
of K " j#

p "R\ s\ s?# for s? : s and s? : 1S"s\ R#[
With regard to the _rst case\ s? : s\ Lemma 1 "applied with V 0 S"s\ R## implies that

K " j#
p "R\ s\ s?# behaves like "s?−s#−1[ Since f"s?# is O""s?−s#1#\ the integrand remains _nite for s? : s

and there is no problem of convergence[
With regard to the second case\ we shall _rst exchange the roles of s and s? as points of application

of the doublet and observation of the SIFs[ Let us call Problem E\ as before\ that where a unit
doublet is applied on the point s? in the direction Ej\ 1S"s\ R# being free of tractions[ Recall that
such a {{doublet|| consists of two opposite forces parallel to Ej with intensity 0:zr? applied on the
points "s?\ r?#2 of the crack lips\ with r? : 9[ The discontinuity of the i!th component of the
displacement at the point "s\ r# of the crack surface is then 1D−0

iq "s#LqpK
" j#
p "R\ s\ s?#zr¦O"r# ðsee

eqn "A0#Ł[ Let us call Problem F that where a unit doublet is applied on the point s in the direction
Ei\ 1S"s\ R# being free of tractions[ The resulting discontinuity of the j!th component of the
displacement at the point "s?\ r?# of the crack surface is 1D−0

jm "s?#LmnK
"i#
n "R\ s?\ s#zr?¦O"r?#[ Apply!

ing Betti|s theorem to these two problems\ we get

1D−0
iq "s#LqpK

" j#
p "R\ s\ s?# � 1D−0

jm "s?#LmnK
"i#
n "R\ s?\ s#

cK " j#
p "R\ s\ s?# � L−0

pq Dqi"s#D−0
jm "s?#LmnK

"i#
n "R\ s?\ s#[ "C2#

The matrices D"s# and D−0"s?# being regular functions of their argument\ eqn "C2# shows that the
behavior of K " j#

p "R\ s\ s?# for s? : 1S"s\ R# is identical to that of K "i#
n "R\ s?\ s#[ Remember that the

latter quantity is a SIF generated at the point s? of the initial crack front "instead of s# by applying
a unit doublet on the point s "instead of s?#[
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It is shown in Appendix D that near a free surface like 1S"s\ R#\ the SIFs of a surface crack
behave like sb\ where s denotes the distance from the point of observation of the SIFs to the free
surface along the crack front\ and b an exponent which is greater than −0[ Thus\ K "i#

n "R\ s?\ s# and
K " j#

p "R\ s\ s?# behave like ðR−D"s\ s?#Łb for s? : 1S"s\ R# with b × −0\ and the convergence of the
integral ÐF+S"s\R# Dqj"s?#K " j#

p "R\ s\ s?# f"s?# ds? follows from there[

Remark[ The {{reciprocity|| relation "C2# was established for V 0 S"s\ R#\ 1S"s\ R# being free of
tractions\ but since its proof used only Betti|s theorem\ it holds for an arbitrary body subjected to
arbitrary boundary conditions[ Combining it with eqn "A2#1\ one then _nds that

LqpZpm"V\ s\ s?# � LmnZnq"V\ s?\ s#cL = Z"V\ s\ s?# � ðL = Z"V\ s?\ s#ŁT[ "C3#

Writing explicitly the components of this tensorial relation using the de_nition "09# of the matrixL\ one gets

ZI\I "V\ s\ s?# � ZI\I "V\ s?\ s#^ ZII\II "V\ s\ s?# � ZII\II "V\ s?\ s#^

ZIII\III "V\ s\ s?# � ZIII\III "V\ s?\ s#^ ZI\II "V\ s\ s?# � ZII\I "V\ s?\ s#^

"0−n#ZI\III "V\ s\ s?# � ZIII\I "V\ s?\ s#^ "0−n#ZII\III "V\ s\ s?# � ZIII\II "V\ s?\ s#[ "C3?#

All of these relations are found to be satis_ed in the special cases investigated by Rice "0874#\ Gao
and Rice "0875\ 0876a\ b# and Gao "0877#[ Also\ eqn "C3?#0 was established in full generality by
Nazarov "0878# and Rice "0878#[

Appendix D

The aim of this Appendix is to study the asymptotic behavior of the SIFs of a surface crack near
a free surface[ The notations employed are completely independent of those in the rest of the
paper[

Let O denote the point of intersection of the crack front and the free surface[ To the lowest
approximation\ the respective positions of the free surface\ the crack surface and the front of the
crack at the point O can be characterized by two angles\ say 80 and 81[ 80 is the angle between the
tangent planes at O to the free surface and the surface of the crack\ and 81 is the angle between
the intersection of these tangent planes and the local tangent to the crack front[ To the next
approximation\ one must specify the curvature tensors C0 and C1 of the free surface and the surface
of the crack at O\ plus the curvature G of the projection of the crack front onto the tangent plane
to the crack at O[ "Again\ we shall be satis_ed with this degree of accuracy\ because re_ning it
would not change the conclusion to be reached in any way[#

Let the boundary of the body V considered be subjected to an arbitrary loading\ and let us
consider spheres S"O\ R# of centre O and su.ciently small radius R for the crack to be a surface
crack within them[ Let T"R# denote the traction _eld exerted on 1S"O\ R# + V\ as a result of the
loading[ Finally\ let us consider a point on the crack front located at the distance s\ as measured
along that front\ from the free surface[ The SIFs Kp"s# at that point depend on all the geometric
and mechanical parameters of the problem\ which can be written symbolically

K"s# 0"KI\ KII\ KIII#"s# 0 P"R\ 80\ 81\ C0\ C1\ G\ s^ T"R## "D0#
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where the functional P is linear with respect to the traction _eld[ If all distances and displacements
are multiplied by l × 9 while the stresses are kept unchanged\ the SIFs are multiplied by zl as
usual[ It follows that

P"lR\ 80\ 81\ C0:l\ C1:l\ G:l\ ls^ T# � zl P"R\ 80\ 81\ C0\ C1\ G\ s^ T# "D1#

for any traction _eld T[
Let us assume that K"s# behaves like sb for s : 9\ where b is some exponent to be determined[

This means that the functional P can be written\ for s : 9\ as

P"R\ 80\ 81\ C0\ C1\ G\ s^ T# � P"b# "R\ 80\ 81\ C0\ C1\ G^ T#sb¦o"sb#[ "D2#

Inserting this equation into the homogeneity property "D1# and identifying terms of order sb\ one
gets the following homogeneity property for the functional P"b#]

P"b# "lR\ 80\ 81\ C0:l\ C1:l\ G:l^ T# � l0:1−bP"b# "R\ 80\ 81\ C0\ C1\ G^ T#[ "D3#

By eqns "D0#\ "D2# and "D3# "applied with l � 0:R#\

K"s# � K"b#sb¦o"sb#\ "D4#

where

K"b# � P"b# "R\ 80\ 81\ C0\ C1\ G^ T"R## � R0:1−bP"b# "0\ 80\ 81\ RC0\ RC1\ RG^ T"R##[

"D5#

Now it has been shown by Bazant and Estenssoro "0868# and Leguillon "0884# that near the
point O\ the stress _eld is of the form

sij"r\ c\ x# � kf "a#
ij "c\ x#ra¦o"ra# "D6#

where r\ c\ x denote spherical coordinates with origin at O\ a an exponent depending on the angles
80 and 81\ the f "a#

ij some universal functions depending only on 80 and 81 "and Poisson|s ratio#\
and k some scalar depending on the geometry and the loading[00 It follows that the traction on
1S"s\ R# + V is of the form

t � s = n 0 kf "a# "c\ x#Ra¦o"Ra#[

Inserting this expression into eqn "D5#\ we get

K"b# � Ra¦0:1−bkP"b# ð0\ 80\ 81\ RC0\ RC1\ RG^ "f "a# "c\ x##Ł¦o"Ra¦0:1−b#

� Ra¦"0:1#−bkP"b# ð0\ 80\ 81\ 9\ 9\ 9^ "f "a# "c\ x##Ł¦o"Ra¦0:1−b#[ "D7#

This equation holds for all su.ciently small values of R[ But K"b# is\ by de_nition\ independent of
R^ thus\ the exponent a¦0

1
−b must be zero\ which means that

b � a¦0
1
[ "D8#

00 In fact\ there are three modes and not only one as eqn "D6# seems to suggest^ but these modes correspond to
di}erent exponents a in general\ so that one of them predominates[
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Now the exponents a found by Bazant and Estenssoro "0868# and Leguillon "0884# are all
greater than −2:1[01 It then follows from eqn "D8# that b is always greater than −0\ as announced
in Appendix C[

Remark[ Taking the limit R : 9 in eqn "D7#\ one gets

K"b# � kP"b# ð0\ 80\ 81\ 9\ 9\ 9^ "f "a# "c\ x##Ł

which shows that K"b# is a universal function of 80\ 81 and k "linear with respect to the last
argument#[

Appendix E

The goal of this Appendix is to establish the universality of the double limit

lim
s:9

lim
R:9 g

s¦s

s−s

Z"V\ R\ s\ s?#"s?−s# ds[

This will be done\ like for the proof of the universality of lims?:s Z"V\ s\ s?#"s?−s#1 "see Appendix
B#\ by replacing the operator Z"V\ R\ s\ s?# by the operator Z"R9\ R\ s\ s?# and letting R9 go to zero
using some homogeneity property for Z"R9\ R\ s\ s?#[

One has

lim
s:9

lim
R:9 g

s¦s

s−s

ðZ"V\ R\ s\ s?#−Z"R9\ R\ s\ s?#Ł"s?−s# ds � 9

because we have seen in Appendix B that the di}erence Z"V\ R\ s\ s?#−Z"R9\ R\ s\ s?# is independent
of R\ continuous with respect to s? and _nite for s? � s[ Thus\

lim
s:9

lim
R:9 g

s¦s

s−s

"V\ R\ s\ s?#"s?−s# ds � lim
s:9

lim
R:9 g

s¦s

s−s

Z"R9\ R\ s\ s?#"s?−s# ds[ "E0#

Let us put

g
s¦s

s−s

Z"R9\ R\ s\ s?#"s?−s# ds? 0 Q"R9\ s\ R\ C\ G# "E1#

and

R"R9\ C\ G# 0 lim
s:9

lim
R:9

Q"R9\ s\ R\ C\ G#[ "E2#

It is easy to check that just like Z"R9\ s\ s?# "see Appendix B#\ Z"R9\ R\ s\ s?# is positively homo!
geneous of degree −1[ It then follows from eqn "E1# that for every positive l\

01 This is not surprising\ since in three dimensions\ a × −2:1 is the condition which ensures that the integral expressing
the total elastic energy is convergent[
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Q"lR9\ ls\ lR\ C:l\ G:l# � Q"R9\ s\ R\ C\ G#[

Taking the double limit R : 9\ then s : 9 in this equation\ we get

R"lR9\ C:l\ G:l# � R"R9\ C\ G#

which yields\ with l � 0:R9 and in the limit R9 : 9]

R"R9\ C\ G# � R"0\ 9\ 9#[

This result\ combined with eqn "E0#\ establishes the universality of the double limit in question[

Appendix F

In this Appendix\ we provide the values of the non!zero components of the universal operators
M"8#\ N"8#\ P"8#\ and also those of the non!universal operator Z"V\ s\ s?# for the important special
case of a semi!in_nite plane crack in an in_nite body[

Table F0 gives the numerical values of the {{in!plane|| components of the operator M"8# for
9 ¾ 8 ¾ 79>[ Values for 8 ³ 9 can be obtained by using the easily proved fact that MI\I and MII\II

are odd\ and MI\II and MII\I even\ functions of 8[ The {{out!of!plane|| component MIII\III"8# is given
by the following formula]

MIII\III "8# �
0

1 sin"pm# $−0
0−m
0¦m1

m:1

cos"pm#¦
0−6m1

0−m1 0
0−m
0¦m1

2m:1

%\ m 0
8

p
[ "F0#

Table F0
Numerical values of the components of the in!plane operator M"8#

8 "># MI\I"8# MI\II"8# MII\I"8# MII\II"8#

9 9 −0[499 9[499 9
4 −9[954 −0[380 9[386 −9[008

09 −9[029 −0[353 9[377 −9[125
04 −9[081 −0[319 9[363 −9[238
19 −9[141 −0[247 9[343 −9[346
14 −9[296 −0[171 9[318 −9[445
29 −9[248 −0[081 9[288 −9[534
24 −9[394 −0[978 9[255 −9[613
39 −9[335 −9[864 9[217 −9[680
34 −9[370 −9[742 9[178 −9[734
49 −9[409 −9[613 9[136 −9[774
44 −9[421 −9[489 9[194 −9[800
59 −9[437 −9[343 9[051 −9[813
54 −9[446 −9[207 9[008 −9[811
69 −9[459 −9[073 9[966 −9[896
64 −9[446 −9[942 9[926 −9[768
79 −9[437 9[962 −9[990 −9[739
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Table F1 provides the numerical values of the non!zero components of the operator N"8# for
the value n � 9[2 and for 9 ¾ 8 ¾ 79>^ NI\III and NIII\I are odd\ and NII\III and NIII\II even\ functions
of 8[

Table F2 provides the numerical values of the non!zero components of the operator P"8# in a
similar way\ again for n � 9[2[ PI\III and PIII\I are even\ and PII\III and PIII\II odd\ functions of 8[ It
is also possible to calculate the components of the operator P"9# in a completely explicit and
analytical way\ and the results read as follows]

PI\III "9# � −1^ PII\III "9# � 9^ PIII\I "9# �
1"0−n#1

1−n
^ PIII\II "9# � 9[ "F1#

A comparison with the works of Gao "0881#\ Xu et al[ "0883# and Ball and Larralde "0884# is in
order here[ Although\ as explained in the Introduction of Part I\ these works did not rely on the
same principle as the present one\ and in particular did not identify the universal operator P"8# as
such\ it is possible to establish some connection with them[ It is found that Ball and Larralde|s
result for KIII along the extended crack front is compatible with Mouchrif|s "0883# value for PIII\I"9#
given by eqn "F1#2\ whereas those of Gao and Xu et al[ are not and furthermore di}er from each
other[ The true value of PIII\I"9# is therefore thought to be that of Mouchrif and Ball and Larralde[

Finally\ the operator Z"V\ s\ s?# is diagonal for a semi!in_nite plane crack in an in_nite body\
and its diagonal components are given by

Table F1
Numerical values of the components of the operator N"8#

8 "># NI\III"8# NII\III"8# NIII\I"8# NIII\II"8#

9 9 −0[065 9 9[713
4 −9[910 −0[065 9[949 9[706

09 −9[930 −0[064 9[099 9[687
04 −9[950 −0[062 9[037 9[656
19 −9[979 −0[069 9[082 9[613
14 −9[987 −0[055 9[125 9[569
29 −9[004 −0[050 9[165 9[595
24 −9[029 −0[044 9[200 9[423
39 −9[033 −0[036 9[231 9[343
34 −9[046 −0[026 9[257 9[257
49 −9[058 −0[014 9[289 9[167
44 −9[067 −0[001 9[395 9[074
59 −9[076 −0[985 9[306 9[989
54 −9[083 −0[966 9[313 −9[993
69 −9[199 −0[945 9[314 −9[987
64 −9[194 −0[922 9[311 −9[077
79 −9[198 −0[996 9[304 −9[164
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Table F2
Numerical values of the components of the operator P"8#

8 "># PI\III"8# PII\III"8# PIII\I"8# PIII\II"8#

9 −1[999 9 9[465 9
4 −0[887 −9[902 9[463 −9[984

09 −0[881 −9[914 9[454 −9[078
04 −0[871 −9[926 9[441 −9[179
19 −0[857 −9[937 9[422 −9[255
14 −0[840 −9[948 9[409 −9[334
29 −0[829 −9[957 9[372 −9[406
24 −0[895 −9[966 9[341 −9[470
39 −0[767 −9[973 9[307 −9[523
34 −0[737 −9[989 9[270 −9[567
49 −0[705 −9[984 9[232 −9[600
44 −0[679 −9[988 9[292 −9[622
59 −0[632 −9[090 9[152 −9[632
54 −0[693 −9[092 9[113 −9[632
69 −0[552 −9[093 9[074 −9[620
64 −0[519 −9[093 9[036 −9[609
79 −0[465 −9[092 9[009 −9[568

ZI\I "V\ s\ s?# �
0
1p

0

"s?−s#1
^ ZII\II "V\ s\ s?# �

0
1p

1−2n

1−n

0

"s?−s#1
^

ZIII\III "V\ s\ s?# �
0
1p

1¦n

1−n

0

"s?−s#1
[ "F2#
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Glossary

De_nition of notations used in appendices A\ B\ C and E

For ease of reference\ we summarize here some important notations used in all Appendices except
Appendices D and F[

K "i#
p "V\ s?\ M#] p!th SIF created at the point s? of the initial crack front by a unit point force exerted
on the point M in the direction Ei 0 1OM:1Xi\ 1Vu being simultaneously clamped and 1Vt free
of tractions[

K "i#
p "V\ s\ s?#] p!th SIF created at the point s of the initial crack front by a unit {{doublet|| exerted
on the point s? of that front in the direction Ei\ 1Vu being clamped and 1Vt free of tractions[

K "i#
p "R\ s\ s?#] p!th SIF created at the point s of the initial crack front by a unit {{doublet|| exerted
on the point s?"$ S"s\ R## of that front in the direction Ei\ the boundary of the sphere S"s\ R#
of centre s and radius R being free of tractions[

LM] di}erential operator which evaluates the stresses at the point M"$ 1S"s\ R## from the dis!
placements\ then the traction t"M# 0 s"M# = n"M#[

v" j#
i "V\ M\ s?#] i!th component of the displacement at the point M generated by a unit doublet
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exerted on the point s? of the initial crack front in the direction Ej\ 1Vu being clamped and 1Vt

free of tractions[
Z"V\ R\ s\ s?#] up to some multiplicative factors\ the components Zpq"V\ R\ s\ s?# represent SIFs at

the point s of the initial crack front created by the application\ on the boundary of the sphere
S"s\ R#\ of traction _elds of the form "LM = v"j#"V\ M\ s?## arising themselves from application of
unit doublets on the point s? of the initial crack front\ 1Vu being clamped and 1Vt free of tractions
ðsee eqn "A1#Ł[

Z"R9\ R\ s\ s?# "with R9 × R#] same quantity as Z"V\ R\ s\ s?#\ the body V being replaced by the
sphere S"s\ R9# with traction!free boundary[

Z"V\ s\ s?#] constant value of Z"V\ R\ s\ s?# for R ³ D"s\ s?# "see Lemma 0#[
Z"R9\ s\ s?#] constant value of Z"R9\ R\ s\ s?# for R ³ D"s\ s?#[

Let us stress the consistency of these notations[ For functions of three variables\ the _rst
argument "V\ R or R9# underlines the dependence upon the geometry of the domain considered^
the second one indicates the point of observation of the function\ and the third one the point of
application of the loading[ For functions of four variables\ an extra argument indicating a depen!
dence upon some other geometric parameter is inserted after the _rst one[


